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FIG2 Comparison of the immune responses in acutely infected control and GFAP-Cre STAT1%f mice. (A) Real-time PCR specific for the Toxoplasma B1 repeat
region was used to quantify the amount of parasite DNA from 500 ng of DNA purified from liver, lung, spleen, and brain at 10 dpi. (B) Mice were infected with
T. gondii, and at 10 dpi, flow cytometry was used to estimate the absolute numbers of the indicated cell population in the spleen and brain from control (solid
bars) and GFAP-Cre STAT1"f (open bars) mice. (C) Flow cytometric profiles of NK cells and CD4" and CD8" T cells and the proportions of neutrophils
(CD45M, Gr-1",and CD11b*), DCs (CD45M, Gr-1—, and CD11c¢ "), macrophages/monocytes (CD45", Gr-1-,and CD11b"), and microglial cells (CD45™t and
CD11b™) gated on dump (CD3, CD19, and NK1.1)~ in BMNCs from control and GFAP-Cre STAT1"f mice. Percentage of CD4* or CD8* T cells and
neutrophils, DCs, macrophages/monocytes, and microglial cells of the gated dump-negative cells. (D) Frequency of IL-12p40 production by DCs, macrophages/
monocytes, and microglial cells in the splenocytes and BMNCs after 4 h. (E and F) Frequency of IFN-vy production by CD4* and CD8* T cells in the spleen (E)
and brain (F) after restimulation with PMA and ionomycin. Graphs show averages from a total of four mice per group at least three times with similar results.

T. gondii, the absolute number and activation status of T cells, macrophages do, and iNOS-deficient mice challenged with
macrophages, and microglia in the brains of GFAP-Cre STAT17f  T. gondii show a similar pattern of susceptibility as the GFAP-Cre
mice were compared with those of control mice. First, although ~ STAT1 mice (44). However, the overall levels of iNOS expres-
astrocytes do not produce inducible nitric oxide synthase (iNOS),  sion were comparable between control and GFAP-Cre STAT1/f
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FIG 3 Increased susceptibility of GFAP-Cre STAT1%f mice to toxoplasmic encephalitis. (A and B) Control and GFAP-Cre STAT1?f mice were infected i.p. with
20 cysts of the ME49 strain of T. gondii, and survival (represented by Kaplan-Meier analysis) (A) and weight loss (B) were assessed. Data for five mice per group
and a combination of two independent experiments are shown. (C) Real-time PCR specific for the Toxoplasma B1 repeat region was used to quantify the amount
of parasite DNA from 500 ng of DNA purified from lung, liver, spleen, retina, and brain at 25 dpi. These graphs are means * standard errors of the means and
show the pooled averages from three independent experiments. *, P < 0.05; **, P < 0.01. (D) Representative hematoxylin-and-eosin-stained sections of the
brains of control and GFAP-Cre STAT17f mice infected for 25 days. Bar, 100 wm. (E) Frozen tissue sections from the brains of infected control and GFAP-Cre
STAT1%f mice were used for IHC detection of T. gondii (green) or GFAP (red), with DAPI (blue) as a nuclear counterstain. Bar, 50 wm.

brains (see Fig. S3 in the supplemental material), indicating that
this antimicrobial pathway was intact. As noted earlier, the num-
bers of BMNCs in WT and GFAP-Cre STAT17f mice at day 10
were comparable, but at 25 dpi in the GFAP-Cre STAT17f mice,
the absolute number of BMNCs was significantly increased over
that of the WT mice (data not shown). Although absolute num-
bers of infiltrating neutrophils, macrophages/monocytes, and
DCs were comparable, the number of microglial cells was signifi-
cantly increased in the GFAP-Cre STAT17f mice (Fig. 5A and B).
Unexpectedly, compared with control mice, all of these local pop-
ulations in infected GFAP-Cre STAT17f mice produced reduced
levels of IL-12p40 (Fig. 5C) and expressed reduced levels of major
histocompatibility complex (MHC) class I and MHC class II but
normal levels of the costimulatory molecules CD80 and CD86
(Fig. 5D and E and data not shown).

Analysis of the lymphocyte responses in the brains of infected
mice revealed that the loss of STATI resulted in an increased re-
cruitment of T cells but not NK cells (Fig. 6A and B). In both
control and GFAP-Cre STAT1"f mice, the T cells exhibited an
activated (Ki-67, granzyme B™, T-bet™, CD44" CD62L!°") phe-
notype (data not shown), and the use of parasite-specific tetram-
ers for individual class I- and II-restricted epitopes also reflected
the increased numbers of parasite-specific T cells present in the
GFAP-Cre STAT1" mice (Fig. 6C). The use of phorbol myristate
acetate (PMA)-ionomycin to stimulate the T cell populations
present in the brain showed that the percentage and MFI of
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IEN-y* CD4" and CD8' T cells in these mice were reduced
(Fig. 6D and E), but the absolute numbers of these IFN-y* pop-
ulations were increased in the GFAP-Cre STAT1%f mice (Fig. 6F).
Despite this difference, the levels of total IFN-vy protein detected in
soluble brain extract were not different between control and
GFAP-Cre STAT17" mice (Fig. 6G). Thus, these data indicate that
the susceptibility of the GFAP-Cre STAT1"f mice is not associated
with an obvious failure to recruit T cells capable of producing
IFN-v or a global defect in the local production of IFN-+y.

The decreased MFI in the production of IFN-vy is reminiscent
of chronic CNS infections that include lymphocytic choriomen-
ingitis virus (LCMV) and T. gondii where high levels of persistent
antigen correlate with repeated activation of T cells, increased ex-
pression of inhibitory receptors (PD-1, PD-L1, CTLA4, LAG3,
and TIGIT), and a decrease in effector capacity (37, 45-48). Phe-
notyping of splenic T cells from mice at 25 dpi indicated that the
expression of these molecules was largely comparable in control
and GFAP-Cre STAT1"f mice, and in the cervical lymph nodes, T
cells expressed similar levels of PD-L1, KLRG1, and CTLA4 (data
not shown). However, in the BMNCs from the GFAP-Cre
STAT1%f mice the CD4™ and CD8™* T cells expressed higher levels
of PD-1, LAG3, and TIGIT (Fig. 6H and I). Together, these data
indicate that the absence of STAT1 in astrocytes does not impact
the initial recruitment of immune cells to the brain, but similarly
to other infections, elevated parasite burdens in the CNS are asso-
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FIG 4 Altered distribution of cysts in GFAP-Cre STAT17' mice. (A) (Left) Control and GFAP-Cre STAT17f (n = 4) mice were infected i.p. with 20 cysts of the
MEA49 strain, mice were sacrificed at 25 dpi, and brain sections were stained to identify Toxoplasma cysts, neurons, and astrocytes, with DAPI being used to
visualize host cell nuclei. Forty-micrometer-thick brain sections from 25-dpi control or GFAP-Cre STAT17f mice were stained with DAPI (blue) and bradyzoite-
specific antigen SAG2X/Y (green). Sections were then examined by fluorescence microscopy. Representative image of whole-brain slices that were reconstructed
using a stitched grid of maximum-projection images taken at X 10 magnification. Bar, 1 mm. Enlarged views of boxed regions are shown below. Bar, 200 wm.
n = 4 mice per genotype, 7 sections per mouse. (Right) Representative images showing a cyst within a neuron in a control brain section (bar, 10 wm) or within
a GFAP™ astrocyte in GFAP-Cre STAT1%f mice. (B) The absolute numbers of cyst counts were square root transformed to account for variance between sections
and mice (mean = standard error of the mean; ****, P < 0.0001). (C) Percentage (mean * standard error of the mean) of cysts present in GFAP* host cells in

these mice.

ciated with increased T cell recruitment but decreased effector
functions.

Transcriptional profiling of astrocyte responses to IFN-y
and type I interferons. Stimulation with IFN-vy is known to in-
duce a broad transcriptional program in different cell types (49,
50). However, the IFN-y-responsive genes in astrocytes are not
well characterized, and whether they differ from those induced by
type I IFN, which also activate STAT1, is unclear. In an attempt to
better understand the impact of IFN-vy on astrocyte function, we
utilized a microarray approach to compare the impact of IFN-y
and IFN-« on mouse primary astrocytes. These data sets [acces-
sion number GSE67137] revealed that, based on a cutoff of 2-fold
change in expression (P < 0.05), stimulation of astrocytes with
these cytokines led to the upregulation of 122 genes, of which 28
genes were uniquely regulated by IFN-vy but not IFN-c, 48 genes
were regulated by IFN-a but not IFN-+, and 46 genes were simi-
larly regulated by the two IFNs (Fig. 7A). These data sets were used
to help identify a subset of genes that were upregulated in response
to IEN-a and IFN-vy (Gbp2, Gbp3, Cxcl10, CD274, Irgm2, Igtp,

6 mBio® mbio.asm.org

Ifi47, and Gbp5), IFN-vy alone (Irfl, Gbpl0, Tgtpl, Cxcl9, and
Icaml), or IFN-a alone (Irf7, Uspl8, and Ccl4) (Fig. 7B) that
might be impacted in vivo by the loss of STAT1 in astrocytes. This
list included multiple p47 GTPases and guanine nucleotide bind-
ing proteins (GBPs) associated with control of T. gondii (9-11, 51)
and also included several chemokines and molecules linked with
immunity to this parasite. To validate this approach, WT and
STAT1 /™ astrocytes were stimulated with T. gondii, IFN-+y, or the
combination of the two and the levels of transcripts for the canon-
ical STAT1 targets Cxcl9, Cxcll10, and the p47 GTPases (Igtp,
Tgtpl, and ligp1) were assessed. As expected, IFN-vy alone or in
combination with T. gondii resulted in a marked increase in these
targets, butin the absence of STAT1, these were markedly reduced
(Fig. 7C and D).

Finally, to provide a global picture of how the loss of STAT1 in
astrocytes affected the local response during TE, we performed
real-time PCR on the brains of uninfected and infected control
and GFAP-Cre STAT17f mice to assess the levels of transcripts for
the likely IFN-vy and type I IFN targets in astrocytes identified
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FIG5 Analysis of the immune populations in infected control and GFAP-Cre STAT17f mice. Mice were infected i.p. with 20 cysts of the ME49 strain, and at day
25, the brain was used to prepare mononuclear cell preparations. (A and B) Mononuclear cell preparations from control and GFAP-Cre STAT1%f mice were
prepared, and FACS was used to quantify the numbers of proportions of neutrophils (CD45", Gr-1*, and CD11b*), DCs (CD45M, Gr-1-, and CD11c™"),
macrophages/monocytes (CD45", Gr-1-,and CD11b™"), and microglial cells (CD45™tand CD11b™") gated on dump (CD3, CD19, and NK1.1) ~ in BMNCs from
control and GFAP-Cre STAT1! mice. (C) Frequency of IL-12p40 production by microglial cells, DCs, and macrophages/monocytes in the BMNCs. SSC, side
scatter. (D and E) Frequency of MHC class I (D) and MHC class II (E) production by DCs, macrophages/monocytes, and microglial cells in the BMNCs. The
graphs show means * standard errors of the means and averages from a total of four mice per group tested at least three times with similar results. *, P < 0.05;
P <0.01; %%, P < 0.005.
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FIG 6 Analysis of production of IFN-vy and expression of inhibitory receptors in T cells during toxoplasmic encephalitis. Control and GFAP-Cre STAT1%f mice
were infected with T. gondii and analyzed at 25 dpi. (A and B) Mononuclear cell preparations from control and GFAP-Cre STAT1%f mice were made, and FACS
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FIG 7 Identification of IFN-vy- and/or IFN-a-inducible genes in primary astrocytes and brain of T. gondii-infected GFAP-Cre STAT1%f mice. Identification of
genes that were differentially regulated 2-fold or more compared to unstimulated astrocytes by IFN-vy and IFN-« after 12 h of culture. (A and B) The cluster of
genes is shown as a heat map. The heat map color indicates log, expression value. This graph represents average gene expression for replicate arrays. (C and D)
Astrocytes were preincubated with IEN-+y for 24 h prior to infection with Pru, and levels of Cxcl9 and Cxcl10 (C) and Igtp, TgtpI, and Iigp1 (D) transcripts were

normalized to expression of B-actin. The data presented are the mean = standard error of the mean from three independent experiments.

above, as well as the related targets Ligp1, Ccl3, and Ccrl. In this
assay, infection in control mice resulted in upregulation of all of
these target genes but only a subset were compromised in the
GFAP-Cre STAT1%f mice (Fig. 8). For those targets that were in-
duced by both IFN-« and IFN-vy or IFN-+yalone, the loss of STAT1
in astrocytes was associated with a significant reduction in their
levels with one exception, Icaml, an adhesion molecule that is
widely expressed by many cell types during TE. It was notable that,
although we examined only a small group of the genes that were
associated uniquely with type I IFNs in astrocytes, the expression
of these genes was not reduced in the GFAP-Cre STAT17f mice,
and indeed for Ccl3, the levels of transcripts were actually elevated.
The latter result is consistent with the increased levels of the
closely related chemokine Ccl4 and their shared receptor Ccrl.
Thus, because levels of transcripts for many of the select type I IFN
targets were not reduced in the GFAP-Cre STAT1%f mice, the in-
creased susceptibility of the GFAP-Cre STAT17f mice to TE cor-
relates most prominently with reduced expression of p47 GTPases
and GBPs (molecules that contribute directly to astrocyte control
of T. gondii) and with reduced production of the IFN-y-inducible
chemokines produced by Cxcl9 and Cxcl10.

Figure Legend Continued

DISCUSSION

Activation and proliferation of astrocytes represent a common
feature of many insults, including infection, that lead to tissue
damage in the brain. The generation of transgenic mice in which
the GFAP promoter was used to drive overexpression of cytokines
or alter signaling pathways has highlighted the role of astrocytes in
limiting immune infiltration to promote healing (52-54). In cur-
rent models, this extensive gliosis during TE provides a physical
barrier to limit tissue damage and isolate areas of pathogen repli-
cation (18, 20, 21), but whether astrocytes contribute directly to
parasite control in vivo has been difficult to address experimen-
tally. Here, the finding that the GFAP-Cre STAT1Yf mice fail to
control parasite replication in the CNS provides the first in vivo
evidence that astrocytes have direct antimicrobial activity that me-
diates local control of T. gondii. This genetic approach has been
used extensively to address astrocyte function but can also cause
gene deletion in a subset of microglial cells, neurons, and neural
stem cells (33, 55, 56), although we found no evidence of STAT1
deletion in these other cell types or that it compromised antimi-
crobial activities in these populations. For example, the overall

was used to quantify the numbers of NK cells and CD4* and CD8* T cells. (C) The BMNCs were stained for T. gondii-specific T cells using MHC class I tetramer
for CD8" T cells and MHC class II tetramer for CD4 " T cells, and the absolute number of tetramer™ T cells was calculated. (D) The BMNCs were analyzed for
the production of IFN-y* by CD4* and CD8" T cells. (E) Frequency and mean fluorescence intensity (MFI) of IFN-vy production by CD4* and CD8* T cells.
(F) Absolute number of IFN-y* CD4* and CD8" T cells. (G) Whole brain was homogenized in PBS, and supernatant was removed for I[FN-vy enzyme-linked
immunosorbent assay. (H and I) Comparison of expression levels of PD-1, LAG3, and TIGIT by CD4* (H) and CD8* (I) T cells in the BMNCs. The graphs show
means = standard errors of the means and averages from three to four mice per group, with similar results seen in a repeat experiment. *, P < 0.05; **, P < 0.01;
B0 P < 0.005; 4%, P < 0.001.
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FIG 8 Identification of IFN-y- and/or IFN-a-inducible genes in primary astrocytes and brain of T. gondii-infected GFAP-Cre STAT17f mice. RT-PCR was used
to estimate the levels of candidate transcripts in the brain of control and GFAP-Cre STAT17f mice infected for 25 days. Transcript levels were normalized to the
expression of B-actin. These graphs are means = standard errors of the means of transcript levels from experimental groups of 4 mice each. A paired analysis of
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levels of iNOS expression were comparable between control and
GFAP-Cre STAT1f brains. Furthermore, since IFN-vy does not
activate neurons to inhibit parasite replication (57), the increased
parasite burden of the GFAP-Cre STAT17f mice is consistent with
akey role for IFN-v in promoting cell intrinsic pathways in astro-
cytes to control parasite replication (58—60).

Invitro studies in astrocytes have established that several of the
p47 GTPases can be recruited to the parasitophorous vacuole, and
the absence of IIGP1 or IGTP results in partial loss of the ability of
IFN-v to restrict growth of T. gondii in these cells (10, 61). A
second group of proteins, the p65 GTPases, are part of this ma-
chinery, and two recent studies highlighted their role in resistance
to T. gondii (12, 13). Thus, the reduced expression of transcripts
for these families observed in the GFAP-Cre STAT17f mice sup-
ports the idea that their susceptibility is a consequence of the in-
ability of IFN-vy to activate astrocytes to limit the growth of T. gon-
dii. These data have to be interpreted with care as multiple
cytokines can activate STAT1, and our data confirmed the ability
of type I interferons to activate STAT1 and illustrated that IFN-vy
and the type I IFNs have unique as well as overlapping effects on
the transcriptional profile of astrocytes. However, our preliminary
studies suggest that, whereas the neutralization of [IFN-vyin chron-
ically infected mice results in increased parasite replication, this is
not the case for blockade of the type I IFN receptor (S. Hidano and
C. A. Hunter, unpublished observations). The latter finding is
consistent with the observation that the levels of transcripts for the
type I IEN targets Irf7, Uspl8, and Ccl4 are not decreased in the
infected GFAP-Cre STAT1f mice.

One unanticipated observation was that the loss of STAT1 in
astrocytes resulted in altered cellular distribution of the cyst stage.
In infected mice, under normal circumstances, this stage is found
predominantly in neurons (43), whereas in GFAP-Cre STAT1"f
mice this latent form was increased in numbers and readily de-
tected in astrocytes. Similarly, in chronically infected WT mice,
treatment with anti-IFN-+y resulted in increased levels of parasite
replication accompanied by elevated cyst numbers (8, 22). Al-
though the distribution of cysts in different cell types was not
assessed in the latter studies, the presence of cysts in astrocytes in
the GFAP-Cre STAT1% mice is unlikely to be a consequence of the
higher parasite burden. Thus, infected GFAP-Cre gp1307f mice
have increased parasite burden in the CNS but no significant in-
crease in cyst numbers (20). Together, these observations suggest
that the activation of STAT1 in astrocytes inhibits cyst formation.
Alternatively, there are host cell pathways, such as signaling
through CD73, which promote cyst formation (62), and STAT1
signaling in astrocytes may disrupt these events. This idea stands
in contrast to previous in vitro studies in which IFN-y was used to
promote cyst formation in astrocytes (63), and additional ap-
proaches are needed to directly address the events that limit cyst
formation in astrocytes.

Given the role for astrocytes in the control of inflammation, it
seemed likely that the GFAP-Cre STAT1%f mice would display
additional phenotypes that were related to their regulatory prop-
erties. For example, the absence of the cytokine receptor gp130 on
astrocytes results in a widespread loss of these cells during TE (20),

Figure Legend Continued

Role of Astrocytes in Infection

and because gp130 signaling activates STAT1, it was possible that
the GFAP-Cre STAT1"f mice would have a similar phenotype.
However, we found that IL-6 (one of the major inflammatory
cytokines that utilizes gp130) did not activate STAT1 in astrocytes,
and the histological analysis and staining patterns for GFAP in the
GFAP-Cre STAT17f mice revealed extensive gliosis and astrocytic
responses to areas of parasite replication. These results imply that
other signaling pathways employed by gp130, such as STAT3 and
mitogen-activated protein kinase (MAPK), mediate the neuro-
protective effects of astrocytes. Astrocytes are also a prominent
chemokine source linked to recruitment of immune cells during
TE (6), and the reduced levels of CcxI9 and Ccxl10 in the CNS of
the GFAP-Cre STAT1%f mice are consistent with that idea. How-
ever, the recruitment of inflammatory macrophages, DC popula-
tions, and T cells in the GFAP-Cre STAT17f mice did not appear
compromised. This may be a consequence of the elevated levels of
CCL3, a chemokine that promotes CD8* T cell effector function
and migration in the CNS (64). Indeed, T. gondii can stimulate
neurons to produce CCL3 (57), and the increased parasite burden
in the GFAP-Cre STAT17 mice may lead to an increased reliance
on this pathway to recruit inflammatory populations. Neverthe-
less, despite normal initial T cell responses in the CNS, at later time
points the T cells in the brains of the GFAP-Cre STAT17f mice had
a small but reproducible reduction in their ability to produce
IFN-+y and increased expression of inhibitory receptors. Since the
disease in the GFAP-Cre STAT17! mice resembles that in chroni-
cally infected mice with severe immune deficiencies (i.e., treated
with neutralizing antibodies specific for IFN-+y or depleted of both
CD4" and CD8* T cells), it seems unlikely that the relatively
modest changes in effector function would be sufficient to explain
the high parasite burden in the GFAP-Cre STAT1! mice. Rather,
we favor a scenario in which the absence of STAT1 in astrocytes
leads to their failure to control parasite replication and this in-
creased antigen load would lead to persistently stimulated
parasite-specific T cells that display an “exhausted” phenotype.
This is supported by reports that correlate increased T cell expres-
sion of PD-1 with the progression of TE or which showed that
blockade of PD-1/PD-L1 resulted in increased effector responses
and better control of T. gondii (37, 48).

Over the last 30 years, there has been an improved understand-
ing of how the immune system operates within the CNS to control
T. gondii. In particular, local perforin-mediated cytotoxic T lym-
phocyte (CTL) activity and production of IFN-y and tumor ne-
crosis factor alpha (TNF-a), which promote macrophage antimi-
crobial effector mechanisms, have key roles in the control of
T. gondii (44, 65-68). Similarly, stimulation through CD40 can
promote the control of T. gondii (69, 70), and in astrocytes, this
pathway is STAT1 independent (Hidano and Hunter, unpub-
lished). Nevertheless, in the GFAP-Cre STAT1%f mice, these other
antiparasite effector mechanisms appear largely intact but are not
sufficient for long-term parasite control. This diverse literature
highlights the need for an integrated immune response that en-
gages multiple effector pathways for the control of T. gondii in the
CNS. There has been a longstanding interest in using this infor-
mation to design strategies that would enhance the ability of the

the infected control and GFAP-Cre STAT1%f mice for the interferon-induced targets Gbp2, Gbp3, Cxcl10, Cd274, Irgm2, Igtp, Ifi47, Tgtp1, Gbp5, Cxcl9, Irf1, and
Gbp10 revealed that this group was significantly different (P = 0.045). ¥, P < 0.05; **, P < 0.01; ***, P < 0.005; ****, P < 0.001.
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immune system to control T. gondii in patients with underlying T
cell defects. Knowing that STAT1 is important in astrocyte im-
mune functions under normal circumstances should provide
novel leads for therapeutic strategies to eradicate the cyst stage and
better manage TE without compromising the neuroprotective ef-
fects of these glia.

MATERIALS AND METHODS

Culture of primary astrocytes. Astrocytes were isolated from mixed glial
cultures derived from the cerebral cortex of 1- to 3-day-old neonatal mice,
as previously described (9, 71). After 12 days of culture, astrocytes (>90%
GFAP™) were plated at a density of 1 X 10 cells/cm? in 12-well plates. To
assess the ability of IFN-v to limit parasite replication, astrocytes were
stimulated with 100 U/ml IFN-+y for 24 h prior to infection. Cultures were
washed, and tachyzoites of the Prugniaud (Pru) strain, Pru-green fluores-
cent protein (GFP) strain, or Pru-Venusluc strain of T. gondii were added
at a ratio of 5 Pru cells to 1 host cell for 20 h. The Pru-Venusluc strain
contains a fusion protein of Venus (a modified version of YFP) and Pho-
tinus pyralis luciferase and was obtained from M. Yamamoto (72). The
percentage of infected cells was assessed microscopically by Hema3
(Fisher Scientific, Kalamazoo, MI) staining. To assess STAT phosphory-
lation, astrocytes were incubated with IFN-vy and infected with Pru at a
ratio of 1 Pru cell to 1 host cell for 1 h. For universal type I IFN (PBL
Interferon Source, Piscataway, NJ), IL-6 (BioLegend, San Diego, CA), and
IL-27 (Amgen, Thousand Oaks, CA), cells were stimulated for 1 h. Astro-
cytes were immediately fixed on ice in 4% paraformaldehyde (PFA) for
20 min and were permeabilized in 90% methanol on ice. Staining was
performed in Fc block with anti-pSTAT1 (pY701) (BD Bioscience, Frank-
lin Lakes, NJ).

Mice and infections. STAT1~/~ mice and GFAP-Cre STAT1%f mice
were bred in the University Laboratory Animal Resources facilities at the
University of Pennsylvania. hGFAP-Cre transgenic mice [Tg(GFAP-
cre)25Mes] (33) and STAT1 -/~ mice (73) were obtained from the Jack-
son Laboratory (Bar Harbor, ME), and STAT17f mice were generated as
previously described (74). Age- and sex-matched conditional knockout
mice were used in experiments, with STAT17f mouse littermates serving
as controls. For infections, cysts of the ME49 strain were isolated from
chronically infected CBA mice and mice were infected with 20 cysts intra-
peritoneally (i.p.). All procedures were performed in accordance with the
guidelines of the University of Pennsylvania Institutional Animal Care
and Use Committee.

Real-time PCR. Real-time PCR was utilized to quantify parasite DNA
as previously described (75). Briefly, DNA was purified from approxi-
mately 50 mg of tissue using the High Pure PCR template preparation kit
(Roche, Mannheim, Germany). Primers for the T. gondii B1 repeat region
were used to quantify the amount of parasite DNA from 500 ng of DNA.
Total RNA was isolated with the Trizol reagent, and first-strand cDNAs
were synthesized using oligo(dT) primers and the Superscript reverse
transcription-PCR (RT-PCR) kit (Invitrogen, Carlsbad, CA). Primers
used were QuantiTect primers (Qiagen, Valencia, CA), and primer se-
quences are listed in the supplemental material. cDNAs were amplified
using Power SYBR Green PCR master mix and a 7500 Fast real-time PCR
system. Analysis was performed with system software, v1.3.1 (Applied
Biosystems, Warrington, United Kingdom).

Analysis of immune responses to T. gondii. Splenocytes were disso-
ciated and subjected to hypotonic red blood cell lysis to generate a single-
cell suspension. BMNCs were extracted from the CNS following treat-
ment of this tissue with collagenase-dispase and DNase I and then isolated
by density gradient centrifugation using Percoll as previously described
(75). Single-cell suspensions were stained in fluorescence-activated cell
sorting (FACS) buffer (0.5% bovine serum albumin [BSA], 2 mM EDTA
in phosphate-buffered saline [PBS]) with Fc block containing LIVE/
DEAD Fixable Aqua dead cell marker (Invitrogen), with a combination of
cell surface antibody markers. Cell surface staining was used with a com-
bination of fluorescein isothiocyanate (FITC), phycoerythrin (PE), PE-
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CF594, peridinin chlorophyll protein (PerCP)-Cy5.5, PE-Cy7, Alexa
Fluor 700, allophycocyanin (APC)-Alexa Fluor 780, APC, and APC-Cy7.
The conjugated and unconjugated antibodies specific to the following
antigens (CD3e, 2C11; CD19, eBiolD3; NK1.1, PK136; CD45, 30-F11;
CD11b, M1/70; CD11c¢, N418; MHC class II, M5/114.15.2; CD4, RM4-5;
CD8a, GK1.5; DX5, DX5; Ly6G, RBC-8C5; Ly6C, HK1.4; PD1, J43; LAG3,
eBioC9B7W; TIGIT, MBSA43) were purchased from BD Biosciences (San
Jose, CA), BioLegend (San Diego, CA), and eBioscience (San Diego, CA).
For cytokine production, cells were plated at a cell density of 1 X 10° cells
per well in 96-well plates and were assayed using cells stimulated for 4 h
with or without PMA and ionomycin in the presence of brefeldin A and
monensin. These cells were stained for surface markers and fixed with 4%
PFA in PBS. Intracellular IFN-y (XMG1.2) and IL-12p40 (C15.6) were
detected by staining in 0.5% saponin buffer (Sigma, St. Louis, MO). Data
were collected on a BD LSRFortessa cell analyzer (BD Bioscience) and
analyzed using Flow]Jo software (Tree Star, Ashland, OR).

Histology and IHC. To detect the presence of T. gondii in paraffin
sections, tissues were fixed overnight in 10% formalin (Sigma) and em-
bedded in paraffin, and 10-um sections were prepared for immunohisto-
chemistry (IHC) as previously described. For frozen sections, brains were
bisected and frozen with optimal cutting temperature (OCT) solution
(Tissue-Tek, Torrance, CA), serial sagittal sections were prepared, and
frozen sections were fixed in 100% acetone. Primary astrocytes were
plated at a density of 1 X 10> cells/cm? in 12-well plates, fixed with 90%
methanol, and then blocked in 2% normal goat serum (NGS) prior to
incubation with antibodies for GFAP (2A5; Dako, Carpinteria, CA;
1:400), STAT1 (E-23; Santa Cruz Biotechnology, Dallas, TX; 1:200), iNOS
(ab15323; Abcam, Cambridge, MA; 1:200), CD11b (M1/70; BD Biosci-
ence; 1:200), and IGTP (BD Bioscience; 1:200), followed with appropriate
secondary antibodies conjugated to Alexa Fluor 488 or Alexa Fluor 594.
DAPI (4',6-diamidino-2-phenylindole) (Invitrogen) was used to visual-
ize nuclei. Samples were mounted in ProLong Gold. Images were collected
on a Nikon E600 fluorescence microscope and analyzed using NIS-
Element (Nikon, Tokyo, Japan).

For whole mounts, brains were collected and fixed for 24 h in PFA
and then immersed in 30% sucrose in PBS before the preparation of
40-pum-thick coronal brain sections. To detect Toxoplasma cysts, brain
sections were incubated with fluorescein-labeled Dolichos biflorus ag-
glutinin (Vector Laboratories; FL-1031; 1:500), a lectin that binds
sugar moieties in the cyst wall (76), and immunostained with antibodies
specific for GFAP (Dako; Z0334; 1:200) and neurons using a cocktail of
biotinylated anti-NeuN (Millipore; MAB3778; 1:200), mouse anti-MAP2
(Sigma; M2320; 1:2,000), and chicken antineurofilament (Abcam;
ab4680; 1:20,000). Where appropriate, species-appropriate Alexa Fluor-
conjugated or Cy5-streptavidin secondary antibodies were used (Invitro-
gen; A31556, A21236, A21449, and 434316), and sections were mounted
with Vectashield Hardset mounting medium (Vector; H-1400). Images
were obtained using a 63X oil lens on a Leica SP5-1I confocal microscope
or a 10X lens on an upright fluorescence microscope (Deltavision RT
deconvolution fluorescence). Images were analyzed using Image] soft-
ware or Adobe Photoshop CS3.

Microarray analysis. Whole-genome expression microarray analysis
was performed as previously described (77). Microarrays and data analy-
ses were carried out as previously described (78). Briefly, total RNA was
isolated from untreated WT primary astrocytes or cells treated with
10 ng/ml of either recombinant IFN-y or universal type I interferon (PBL
Assay Science) for 12 h, and then biotin-labeled cRNA was generated.
[lumina MouseRef-8 version 2 expression BeadChips were hybridized
with cRNA and scanned, and images were converted to raw expression
values. Data analyses were carried out using the statistical computing
environment R (v3.0.2), the Bioconductor suite of packages for R, and
RStudio (v0.97). Probe sets that were differentially regulated =2-fold
(P = 0.05) after controlling for multiple testing using the Bonferroni-
Hochberg method were used for heat map generation. Genes were defined
as being selectively induced if they were expressed =2-fold by IFN-+y treat-
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ment relative to control but not by type I interferon treatment or vice
versa. Genes were defined as inducible by both cytokines if their expres-
sion was increased >2-fold by both treatments.

Statistics. Statistical significance was determined using a two-tailed
unpaired Student ¢ test, which was performed using Prism 6 software
(GraphPad Software, La Jolla, CA). Significance of survival curves was
assessed using Kaplan-Meier survival curves. Where appropriate, a paired
analysis was used to assess changes in levels of IFN-y-induced genes. Error
bars indicate the standard deviations of the means: *, P < 0.05; **, P <
0.01; ***, P < 0.001; ****, P < 0.0001.

Accession number(s). Nonnormalized, non-background-subtracted
raw data have been deposited in the Gene Expression Omnibus (GEO)
database for public access (accession number GSE67137).
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