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Salvador, Bahia, Brazil, 3 Serviço de Imunologia, Complexo Hospitalar Prof. Edgard Santos, Universidade

Federal da Bahia, Salvador, Bahia, Brazil, 4 Instituto Nacional de Ciências e Tecnologia-Doenças Tropicais,

Salvador, Bahia, Brazil

* pscott@upenn.edu

Abstract

Deregulated CD8+ T cell cytotoxicity plays a central role in enhancing disease severity in

several conditions. However, we have little understanding of the mechanisms by which

immunopathology develops as a consequence of cytotoxicity. Using murine models of

inflammation induced by the protozoan parasite leishmania, and data obtained from patients

with cutaneous leishmaniasis, we uncovered a previously unrecognized role for NLRP3

inflammasome activation and IL-1β release as a detrimental consequence of CD8+ T cell-

mediated cytotoxicity, ultimately resulting in chronic inflammation. Critically, pharmacologi-

cal blockade of NLRP3 or IL-1β significantly ameliorated the CD8+ T cell-driven immunopa-

thology in leishmania-infected mice. Confirming the relevance of these findings to human

leishmaniasis, blockade of the NLRP3 inflammasome in skin biopsies from leishmania-

infected patients prevented IL-1β release. Thus, these studies link CD8+ T cell cytotoxicity

with inflammasome activation and reveal novel avenues of treatment for cutaneous leish-

maniasis, as well as other of diseases where CD8+ T cell-mediated cytotoxicity induces

pathology.

Author summary

Leishmaniasis is a neglected tropical disease endemic in 98 countries and approximately 1

million new cases occur each year. Disease caused by Leishmania braziliensis, the main

causative agent of leishmaniasis in South America, leads to skin ulcers that are difficult to

heal with drugs that target the parasites. This is because disease severity seen in patients

infected with L. braziliensis is largely due to the immune response that develops, rather

than the number of parasites in the skin. CD8+ T cells induce cell death in the lesions of

L. braziliensis-infected mice, as well as in the lesions from L. braziliensis-infected patients,

which promotes disease. However, the mechanism mediating CD8+ T cell dependent

pathology is unknown. Here, using studies in mice and experiments with L. braziliensis
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patients’ samples we show that increased disease severity is due to inflammasome activa-

tion, and furthermore that therapies that block either inflammasome activation or IL-1β
ameliorate disease in mouse models of severe leishmaniasis. Based on these studies we

propose a novel strategy of therapy for L. braziliensis infection and other diseases in which

cytotoxicity plays a central role in promoting disease severity.

Introduction

Granule mediated cytotoxicity is required for the clearance of several viral pathogens, as well

as the killing of tumor cells [1]. However, cytotoxicity can also provoke a detrimental inflam-

matory response in several diseases, including experimental cerebral malaria, Trypanosoma
cruzi-elicited cardiomyopathy and Coxsackievirus B3-induced myocarditis [2–6], and can

contribute to the pathology of atherosclerotic disease, rheumatoid arthritis, chronic kidney

disease, diabetes and atopic dermatitis [7–16], as well as many forms of drug-induced cutane-

ous hypersensitivity [17]. While we have a good understanding of the mechanism by which

cytotoxicity leads to viral clearance and the control of malignant transformed host cells, how

CD8+ T cell-mediated killing of infected cells leads to tissue inflammation is still poorly

understood.

Cutaneous leishmaniasis, caused by an intracellular protozoan parasite transmitted by sand

flies, exhibits a wide spectrum of clinical manifestations. There is no vaccine for leishmaniasis,

and chemotherapeutic drugs are toxic and often ineffective. Some of the most severe forms of

the disease occur in Brazil, where patients develop chronic single or multiple ulcerated lesions,

and in some cases a disfiguring form of the disease called mucosal leishmaniasis. Somewhat

surprisingly, these severe forms of leishmaniasis are not driven by a high parasite burden, but

rather are due to an uncontrolled inflammatory response [18]. For a long time it was believed

that the disease was driven by a poorly regulated CD4+ Th1 response, leading to exaggerated

inflammation. However, recent findings demonstrate that the inflammation seen in L. brazi-
liensis patients is strongly associated with granule-mediated cytotoxicity induced by CD8+ T

cells [19–25], and recent studies in mice conclusively demonstrated that CD8+ T cell-mediated

cytotoxicity is a cause rather than a consequence of pathology in cutaneous leishmaniasis [23]

[26,27]. These findings suggest that targeting CD8+ T cell cytotoxicity for an immunotherapy

might be protective, an approach far better than blocking a CD4+ Th1 response that could

lead to uncontrolled parasite replication. However, to develop such a therapeutic approach

requires defining the pathway that leads to severe pathology by cytolytic CD8+ T cells.

CD8+ T cell-induced apoptosis of target cells is generally not considered inflammatory,

since the intracellular content of the dying cells is confined to apoptotic bodies that are rapidly

engulfed by neighboring phagocytes [28]. However, there is increasing evidence that apoptosis

is not always ‘silent’ and can also be immunogenic [28]. Specifically, release of “danger signals”

from dying cells can activate inflammasomes, multiprotein complex sensors that regulate the

processing of caspase-1 to activate pro-inflammatory cytokines such as IL-1β [29]. In support,

a genome-wide transcriptional profiling of lesions from L. braziliensis patients compared to

normal skin revealed that genes involved in both cytotoxicity and inflammasome activation

were highly upregulated[24]. Furthermore, both inflammasome activation and IL-1β have

been linked with disease severity in leishmaniasis [30], suggesting that CD8+ T cell cytotoxi-

city might increase inflammasome activation and IL-1β production, thereby driving disease

severity.

Cytotoxicity mediates inflammasome activation
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Here we show that inflammasome activation and IL-1β release is indeed driven by CD8+ T

cell-induced cytotoxicity. By employing two different murine models of infection, we found

that CD8+ T cell-induced pathology depended on the NLRP3 inflammasome and IL-1β signal-

ing, and demonstrated that the NLRP3 inflammasome is required for the high levels of IL-1β
present within lesions of leishmaniasis patients. Furthermore, we demonstrated that CD8+ T

cell-induced pathology could be abrogated with pharmacological inhibitors of NLRP3 or IL-1,

which opens up the possibility of using several FDA-approved, commercially available drugs

to ameliorate disease in patients. Together, these results provide the foundation for new strate-

gies for treating leishmaniasis patients, as well as other diseases where CD8+ T cell-cytotoxicity

drives pathology.

Results

IL-1β production is a consequence of actively cytolytic CD8+ T cells

In order to define the downstream mechanisms of CD8+ T cell cytotoxicity that cause immu-

nopathology following infection with L. braziliensis we utilized our recently developed murine

model [23]. As we previously reported, RAG deficient mice infected with L. braziliensis do not

develop lesions in the skin despite being unable to control parasites (Fig 1A) [23]. In contrast,

while RAG deficient mice reconstituted with CD8+ T cells (RAG+CD8) and infected with L.

braziliensis remain unable to control the parasites [23], they now develop severe lesions over

the course of weeks (Fig 1A). In addition to containing CD8+ T cells, the lesions of RAG+CD8

mice had more CD11b+ cells than control RAG mice at 7 weeks (mean number of CD11b

+ cells—naïve RAG: 2.4 x 104; infected RAG: 5.3 x 104; RAG+CD8: 32 x 104). Notably, both

Il1a and Il1b RNA expression were significantly increased in RAG+CD8 mice in comparison

to RAG mice, though the increase in Il1b was much greater than Il1a (Fig 1B). We next asked

if pro-IL-1β protein was also expressed in the skin by flow cytometry. Infection of RAG mice

with L. braziliensis did not change the expression of pro-IL-1β in the skin, suggesting that

parasites alone do not induce pro-IL-1β expression at the infection site (Fig 1C and 1D). Con-

versely, RAG+CD8 mice had a significant increase in the frequency of CD11b+ cells express-

ing pro-IL-1β (Fig 1C and 1D) and there was enhanced secretion of IL-1β from ears of RAG

+CD8 mice after 48 hours of in vitro culture as measured by ELISA (Fig 1E). With the excep-

tion of dendritic cells, all populations of myeloid cells analyzed, including macrophages,

monocytes and neutrophils expressed more pro-IL-1β after infection in RAG+CD8 mice com-

pared with RAG mice (S1A–S1D Fig). Notably, the pathology induced by CD8+ T cells was

associated with increased recruitment of neutrophils to the skin, and the frequency of Ly6G+

cells was significantly higher in RAG+CD8 mice compared to RAG mice (S1E and S1F Fig).

Therefore, the majority of cells expressing pro-IL-1β were monocytes in RAG mice, whereas

in RAG+CD8 mice, neutrophils accounted for more than 70% of the IL-1β production within

the skin (S1G Fig). The increased inflammation observed in RAG+CD8 mice was associated

with a significant increase in mRNA levels for CCL3 and CXCL1 (S2 Fig) suggesting that

CCL3 and CXCL1 might be responsible for the intense recruitment of neutrophils induced by

CD8+ T cells.

The pathology induced by CD8+ T cells is dependent on granule-mediated cytotoxicity,

since L. braziliensis-infected RAG mice reconstituted with perforin deficient CD8+ T cells

(RAG+PRF-/-CD8) do not develop pathology (Fig 1F) [23]. Therefore, we next asked if pro-

IL-1β was decreased in cells from infected RAG+PRF-/-CD8 mice. In fact, pro-IL-1β expres-

sion after L. braziliensis infection in RAG+PRF-/-CD8, though slightly higher than RAG mice

infected without T cells, was significantly lower than in RAG+WT CD8 (Fig 1G and 1H), sug-

gesting that the increased expression of pro-IL-1β in the skin is dependent on the cytolytic

Cytotoxicity mediates inflammasome activation
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activity of CD8+ T cells. To determine if cytotoxicity is also necessary for pro-IL-1β expression

in other skin models of inflammation, we used an imiquimod treatment model that mimics

certain aspects of psoriatic lesions in which both cytotoxicity and IL-1 have been implicated in

disease [31,32]. We found that imiquimod treatment (S3 Fig) increased the frequency of pro-

IL-1β-producing CD11b+ cells in WT mice but not in perforin deficient mice (S3B Fig).

Together, these results demonstrate that the presence of cytolytic CD8+ T cells promotes IL-1β
production, which is associated with enhanced recruitment of neutrophils and other cells to

the skin, many of which also express pro-IL-1β.

Immunopathology induced by CD8+ T cells is dependent on IL-1β
To test whether IL-1β was responsible for increased disease severity, or was a consequence of

increased inflammatory signaling, we monitored the extent and kinetics of lesion development

in RAG+CD8 mice that were treated with anti-IL-1R, anti-IL-1β or anti-IL-1α monoclonal

antibodies two weeks after infection. Notably, both anti-IL-1R and anti-IL-1β treated mice

developed much smaller lesions in comparison to control mice (Fig 2A and 2B). Since IL-1α is

highly expressed in the skin of mice and humans, it seemed likely that it might also contribute

Fig 1. Increased IL-1β in L. braziliensis lesions is dependent on CD8 T cell cytotoxicity. RAG-/- mice were

infected with L. braziliensis in the ear, and reconstituted with CD8 T cells or did not receive cells and (a) the course of

infection was monitored and representative images of lesions are shown. At 7 weeks post infection mice were

euthanized and (b) mRNA levels for IL1a and IL1b were assessed. mRNA data is represented as a fold change (FC)

over expression in naïve mice. At 7 weeks post infection, lesions were also digested and used for flow cytometric

analysis. Depicted are (c) representative histogram and (d) bar graph of intracellular staining for IL-1β. (e) Ears were

cultured for 48 hours and IL-1β release was measured in the supernatants by ELISA. RAG-/- mice were infected with L.

braziliensis in the ear, and reconstituted with either WT or perforin-/- CD8 T cells or did not receive cells and (f) course of

infection was monitored. At 7 weeks post infection mice were euthanized, lesions were digested and used for flow

cytometric analysis. Depicted are (g) representative histogram and (h) bar graph of intracellular staining for IL-1β.

Representative data from one of three or more independent experiments (n = 3 to 5 mice per group) with similar results

are presented. *p� 0.05 or ***p� 0.001; ns, non-significant

doi:10.1371/journal.ppat.1006196.g001
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Fig 2. Immunopathology caused by CD8 T cells is IL-1β-dependent. RAG-/- mice were infected with L.

braziliensis in the ear, and reconstituted with CD8 T cells or did not receive cells and at 2 weeks post infection

mice were treated with (a) anti-IL-1R mAb, (b) anti-IL-1βmAb (c) anti-IL-1αmAb or (f) anakinra; ear thickness

was assessed weekly. (d) 4 weeks or (g) 6 weeks post infection mice were euthanized and lesions were

digested and used for flow cytometric analysis of intracellular IFN-γ and GzmB on CD8 T cells. (e and h)

Parasite burden in the lesions. Graphs are data combined from 2 independent experiments (n = 3 to 5 mice

per group in each experiment). C57BL/6 mice were infected with L. major in the ear, and 2 weeks later mice

were co-infected with 2×105 PFU of LCMV Armstrong strain by i.p. injection. Ten days post LCMV infection

mice were treated with anakinra or were left untreated; (i) ear thickness was assessed weekly. Five weeks

post infection with L. major, mice were euthanized and the (j) number of parasites in the skin was determined

and lesions were digested and used for flow cytometric analysis of intracellular IFN-γ, and GzmB on (k) CD4 T

Cytotoxicity mediates inflammasome activation
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to the development of pathology. Indeed, recent studies show that IL-1α activated by commen-

sal bacteria in the skin amplifies the inflammatory response in leishmaniasis [33]. However,

anti-IL-1α had minimal impact on the development of pathology (Fig 2C). Importantly, block-

ade of IL-1α, IL-1β or both (anti-IL-1R) had no effect on CD8+ T cell production of GzmB or

IFN-γ (Fig 2D), or on parasite numbers (Fig 2E). To determine if a well-established treatment

for patients with IL-1 dependent inflammatory diseases might be an effective immunotherapy

in cutaneous leishmaniasis, we treated RAG+CD8 mice with anakinra, a recombinant version

of the IL-1R antagonist [34]. Critically, pharmacological blockade of IL-1 signaling prevented

the severe CD8+ T cell-mediated pathology normally present in RAG+CD8 mice (Fig 2F), and

again had no impact on GzmB or IFN-γ expression by CD8+ T cells (Fig 2G) or parasite num-

bers (Fig 2H). In addition, we also found that treatment with anti-IL-1R mAb decreased the

lesions size of BALB/c mice infected with L. braziliensis without affecting parasite numbers

(S4A and S4B Fig). Together, our data reveal that pathology induced by CD8+ T cells in the

skin is dependent on IL-1β. Since blockade of this cytokine does not affect IFN-γ production

or parasite control, our studies identify anakinra or monoclonal antibodies that specifically

block IL-1β (such as canakinumab) as potential therapeutics for treatment of cutaneous leish-

maniasis. Furthermore, since GzmB levels were not altered by IL-1 blockade, our results sug-

gest that IL-1β production occurs downstream of CD8+ T cell activation.

In order to ask if blockade of IL-1 was effective after the onset of pathology, we started the

treatment with anakinra after signs of inflammation, such as redness and thickening of the

skin, had started to develop in RAG+CD8 mice. We found that treatment after pathology has

already developed in RAG+CD8 mice results in slower lesion development, although it does

not completely prevent inflammation (S4C Fig). Treatment after the onset of pathology did

not affect parasite control (S4D Fig).

Pharmacological blockade of IL-1 prevents pathology induced by

bystander CD8+ T cells

The CD8+ T cell-mediated pathology seen in human leishmaniasis is not recapitulated in most

murine models of leishmania infection. However, we recently found that co-infection with

acute lymphocytic choriomeningitis virus (LCMV) in C57BL/6 mice leads to exacerbated skin

immunopathology in L. braziliensis-infected mice, which depends on CD8+ T cells, and not

NK cells or CD4 T cells [26]. In this model, L. major infected mice are infected systemically

with LCMV two weeks post-infection. In spite of a co-infection, as in singly infected mice

LCMV clearance occurs by day 8, and there is only a transient increase in the leishmania bur-

den of co-infected animals [26]. However by 5 weeks post L. major infection, co-infected mice

develop larger leishmanial lesions than do controls, with a significant increase in the frequency

of neutrophils. This model, initially developed to demonstrate that viral co-infections can alter

the magnitude of disease in leishmaniasis patients, allows us to probe the mechanisms of

pathology mediated by CD8+ T cells in conventional animals with a full complement of

immune cells. Therefore, we first determined if IL-1 was also required in this model of CD8

+ T cell-dependent pathology, and treated co-infected and control mice with anakinra starting

24 days after L. major infection. As previously reported [35], the course of infection with L.

major is not altered in the absence of IL-1 (Fig 2I). Importantly, however, treatment with ana-

kinra 10 days post LCMV infection completely abrogated leishmanial-induced skin pathology

cells or (l) CD8 T cells. Graphs are data from 2 independent experiments (n = 5 mice per group) with similar

results are presented. *p� 0.05, **p� 0.01 or ***p� 0.001; ns, non-significant

doi:10.1371/journal.ppat.1006196.g002

Cytotoxicity mediates inflammasome activation
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(Fig 2I), despite similar parasite burdens, frequency of IFN-γ-producing CD4+ and CD8+ T

(Fig 2G, 2K and 2I), and GzmB-expressing CD8+ T cells (Fig 2G and 2I). Altogether, these

data demonstrate that IL-1 signaling plays an unexpected and key role in severe disease pathol-

ogy in murine models of leishmaniasis driven by cytotoxic CD8+ T cells.

Caspase-1 and the NLRP3 inflammasome are required for CD8+ T cell-

mediated pathology

IL-1β requires processing to become active and signal through the IL-1R [36]. There are both

inflammasome dependent and independent pathways to process IL-1 and specifically, neutro-

phil proteases have been demonstrated to be sufficient to cleave IL-1β in situations where

these cells are abundant [37] [38] [39], which is the case in L. braziliensis lesions. Therefore, to

determine if the inflammasome was involved in disease caused by CD8+ T cells, we infected

WT or caspase-1/11 deficient C57BL/6 mice with L. major. As previously reported [40], cas-

pase-1/11 deficient mice infected with L. major had similar lesion development as WT mice

(Fig 3A). In contrast, while WT mice developed larger lesions after co-infection with LCMV,

lesions in caspase-1/11 deficient mice were smaller at 4 weeks post infection (Fig 3A). Though

it is not clear if those responses are leishmania-specific, deficiency in caspases-1/11 did not

affect either GzmB or IFN-γ production by CD8 or CD4 T cells (Fig 3B) and parasite numbers

detected at 5 weeks post-infection remained unchanged (Fig 3C). Together, these data suggest

that caspase-1/11 is required for pathology induced by CD8+ T cells and importantly does not

affect parasite control. Under certain conditions caspase-11 can contribute to IL-1β process-

ing, but regardless of the stimulus caspase-1 appears to be required [41]; at present we do not

know if caspase-11 also contributes to IL-1β release in this model. Since caspase-1 plays a criti-

cal role, and can be cleaved by several different inflammasomes in order to become active [36],

we next investigated which inflammasome is required for CD8+ T cell-mediated pathology.

Fig 3. Immunopathology caused by CD8 T cells is dependent on the NLRP3 inflammasome. WT, caspase-1/11-/-

or NLRP3-/- C57BL/6 mice were infected with L. major in the ear, and 2 weeks later mice were co-infected with 2×105

PFU of LCMV Armstrong strain by i.p. injection; (a and d) ear thickness was assessed weekly. Five weeks post infection

with L. major, mice were euthanized and the lesions were digested and used for flow cytometric analysis of intracellular

IFN-γ and GzmB on (b and e) CD4 T cells or CD8 T cells. (c and f) Number of parasites in the skin was determined at 5

weeks post infection with L. major. Graphs are data from 2 to 3 independent experiments (n = 5 mice per group) with

similar results. **p<0.01

doi:10.1371/journal.ppat.1006196.g003

Cytotoxicity mediates inflammasome activation
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We focused on the NLRP3 inflammasome, as NLRP3mRNA levels were significantly higher

in lesions from L. braziliensis patients in comparison to normal skin [24], and NLRP3 can be

activated by damage-associated molecular patterns (DAMPs) [42], potentially released by CD8

+ T cell-induced cell death. We found that following infection of WT or NLRP3 deficient

C57BL/6 mice with L. major, WT and NLRP3 deficient mice had similar lesion sizes (Fig 3D).

However, while WT mice co-infected with LCMV developed severe lesions, NLRP3 deficiency

decreased CD8+ T cell-mediated disease (Fig 3D). The changes in pathology were not associ-

ated with differences in the capacity of either CD4 or CD8+ T cells to make IFN-γ, or CD8+ T

cells to express GzmB (Fig 3E). Importantly, the number of parasites in the skin was similar in

all groups of mice (Fig 3F). These differences were not associated with a deficit in the ability of

CD8+ T cells from NLRP3 deficient mice to respond since CD8+ T cells from NLRP3 deficient

mice infected with LCMV alone responded as well as CD8+ T cells from wild-type mice (S5A–

S5D Fig). The NLRP3 inflammasome has been previously linked with expression of inducible

nitric oxide synthase (iNOS) [40], here we found no significant changes in CD11b+ cells

expressing iNOS by flow cytometry (S6 Fig). Together, these results suggest that IL-1β release

is dependent upon the NLRP3 inflammasome, which is particularly important as the NLRP3

inflammasome has been linked to chronic inflammation [43] and new drugs are being devel-

oped to block its activation.

Pharmacological inhibition of the NLRP3 inflammasome prevents CD8

+ T cell-mediated pathology

Our results above suggest that the NLRP3 inflammasome is activated by CD8+ T cell-mediated

cytotoxicity and drives disease progression. A number of small molecule inhibitors have been

identified that inhibit NLRP3 inflammasome activation, for example, MCC950 and the diabe-

tes drug glyburide [44] [45]. We therefore asked if blocking this pathway after leishmania

infection could influence the progression of disease. Indeed, co-infected mice treated with

MCC950 or glyburide failed to develop the severe disease seen in untreated co-infected mice

(Fig 4A and 4B), while treatment with NLRP3 inhibitors had no effect on mice only infected

with leishmania (Fig 4A and 4B). Critically, smaller lesions in mice treated with the NLRP3

inhibitors was associated with a decrease in neutrophils present in the skin in comparison to

control mice co-infected with LCMV (Fig 4C and 4D). Inhibiting the NLRP3 inflammasome

in co-infected mice had no significant effect on parasite numbers (Fig 4E and 4F), suggesting

once again that reduction in disease severity was unrelated to parasite control. To confirm

these results, we treated RAG+CD8 mice with glyburide or MCC950 2 weeks post L. brazilien-
sis infection. Similar to the co-infected mice, pharmacological blockade of the NLRP3 inflam-

masome significantly reduced lesion development in RAG+CD8 mice (S7A Fig) without

affecting parasite control in the skin (S7B Fig).

IL-1β production is increased in lesions from leishmania-infected

patients and cytotoxic effector proteins correlate with IL-1β expression

Using a genome-wide transcriptional profiling in L. braziliensis patients [24], we found that

both IL1A and IL1B transcripts were elevated compared with normal skin (S8A and S8E Fig).

Importantly, we found that levels of IL1B expression were positively correlated with those of

GZMB, GZMA and PRF1 (S8B, S8C and S8D Fig), whereas IL1A expression did not correlate

with GZMB, GZMA or PRF1. The high levels of IL-1β mRNA correlated with increased expres-

sion of pro-IL-1β in the skin (Fig 5A). Similar to what we observed in mice, expression of pro-

IL1β is different between granulocytes (CD11b+ CD66b+ cells) and macrophages/monocytes

(CD11b+ CD68+ cells) in the skin of L. braziliensis patients (Fig 5B). To determine if IL-1β

Cytotoxicity mediates inflammasome activation
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was processed and released by cells in leishmanial lesions, we collected lesion biopsies from L.

braziliensis patients, cultured them in vitro for 48 hr, and measured the amount of IL-1β protein

released into the supernatant. We found elevated levels of IL-1β in the supernatants of cultured

L. braziliensis skin biopsies but not normal skin biopsies (Fig 5C). Finally, to determine if IL-1β
production in human lesions was dependent on the NLRP3 inflammasome, we tested if IL-1β
production by skin biopsies from L. braziliensis lesions was blocked by NLRP3 inhibition. Biop-

sies were again collected from patients, and then divided into two, with one half acting as a

control, and the other treated with glyburide. While untreated skin lesion biopsies produced IL-

1β, treatment with glyburide significantly decreased the release of IL-1β in culture (Fig 5D).

Fig 4. Treatment of mice with NLRP3 inhibitors dampens the immunopathology caused by CD8 T

cells. WT C57BL/6 mice were infected with L. major in the ear, and 2 weeks later mice were co-infected with

2×105 PFU of LCMV Armstrong strain by i.p. injection. Ten days post LCMV infection mice were treated with

MCC950, glyburide or vehicle; (a and b) ear thickness was assessed weekly. Five weeks post infection with

L. major, mice were euthanized and the lesions were digested and the (c and d) frequency of neutrophils in

the skin was determined directly ex vivo by flow cytometry. (e and f) Number of parasites in the skin was

determined at 5 weeks post infection with L. major. Results in mice are data from one experiment with 5 mice

per group. *p� 0.05, **p<0.01 or ***p� 0.001

doi:10.1371/journal.ppat.1006196.g004

Cytotoxicity mediates inflammasome activation
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Importantly, treatment with glyburide did not affect the production of other cytokines, such as

IL-6 and IL-10 (Fig 5E and 5F). Together, these findings show evidence that the pathway identi-

fied in mice leading from CD8+ T cell cytotoxicity to NLRP3 inflammasome activation and sub-

sequently IL-1β release may also be occurring in L. braziliensis patients. Thus, our results

strongly suggest that targeting the inflammasome or IL-1β in humans with existing therapeutic

regimens could prevent the pathology induced by excessive CD8+ T cell-mediated cytotoxicity.

Discussion

The severity of disease progression following an infection depends not only on the pathogen

burden, but also on the magnitude and type of the inflammatory response elicited. This is

especially true for certain forms of cutaneous leishmaniasis, where disease progression can be

relatively independent of the number of parasites and is instead driven by an exaggerated

immune response. Though it is clear that cytotoxic CD8+ T cells causes immunopathology in

cutaneous leishmaniasis [19] [20,21,25] [24] [23,26,27], a fundamental understanding of how

cytotoxicity enhances inflammation and disease progression was undetermined. In this study,

we have dissected the downstream mechanisms of CD8+ T cell cytotoxicity that exacerbates

the inflammatory skin environment and found a central role for the NLRP3 inflammasome

and IL-1β. Besides increasing our understanding of how cytotoxicity influences inflammation,

this work provides evidence for previously unappreciated targets to suppress immunopathol-

ogy in cutaneous leishmaniasis and other situations in which cytotoxicity exacerbates disease.

IL-1 has been linked to disease in many chronic inflammatory disorders and while IL-1 can

have protective effects, the preponderance of data in leishmania infection indicates that exces-

sive IL-1 is detrimental. Thus, while early production of IL-1 enhances T cell priming and pro-

motes the development of protective Th1 responses during leishmania infection [46] [47] [48],

continuous treatment of infected mice with IL-1 exacerbates disease [48] [47], and a recent

study with a non-healing strain of L. major found that IL-1β was required for the chronic dis-

ease phenotype [30]. Furthermore, increased disease severity in patients infected with L. mexi-
cana has been linked with the excess IL-1β production [49]. Taken together, the combined

results of several studies indicate that while healing can occur in the absence of IL-1, the over-

production of IL-1β promotes disease severity.

Fig 5. IL-1β is highly expressed in human lesions and blockade of NLRP3 prevents IL-1β release from human

skin biopsies. Cells isolated from lesions or PBMC obtained from L. braziliensis patients were stained for flow cytometry

directly ex vivo and depicted are (a) IL-1β+ CD11b+ cells (b) IL-1β expression within CD68+ (macrophages and

monocytes) or CD66b+ (granulocytes) in the skin. Data obtained from (a) 19 PBMC or 18 skin lesions or (b) 13 skin

lesions. (c) Punch biopsies from normal skin or L. braziliensis lesions were cultured for 48h and IL-1βwas measured in

the supernatants by ELISA. Data obtained from 5 normal skin samples and 14 lesions. L. braziliensis patients’ skin

biopsies were cut in half and one half was cultured in media+DMSO and the other half with media+glyburide; 48 hours

later, the presence of (d) IL-1β, (e) IL-6 and (f) IL-10 in the supernatants was determined by ELISA. Data obtained from 9

skin samples from two independent experiments. PBMC, peripheral blood mononuclear cells. **p<0.01 or ***p<0.001

doi:10.1371/journal.ppat.1006196.g005
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The canonical pathway for maturation and release of IL-1β involves processing of pro-IL-1β
by caspase-1, following activation of caspase-1 by the inflammasome. Since the NLRP3 inflam-

masome can be activated by DAMPs released from dying cells, and the NLRP3 gene was upre-

gulated in lesions from L. braziliensis patients, [24] we hypothesized that CD8-T cell mediated

cytolysis drives disease progression by increasing NLRP3 inflammasome-driven caspase-1 acti-

vation. Indeed, our results show that pathology was reduced in caspase-1/11 and NLRP3 knock-

out mice. These results are consistent with two previous studies showing that NLRP3 inhibits

protective immune responses in leishmaniasis [30,50]. In contrast, one study has reported that

NLRP3 deficient mice infected with L. amazonensis are more susceptible to infection, although

L. amazonensis infected mice fail to heal in the presence or absence of the NLRP3 inflamma-

some [40]. Since mice infected with L. amazonensis develop a poor CD4+ Th1 response [51], it

may be that under these circumstances NLRP3-dependent IL-1β promotes better protection by

activating the iNOS pathway of parasite control [40]. Here we found no evidence that iNOS

expression is different between NLRP3 sufficient and deficient mice, suggesting that at least in

CD8+ T cell-induced pathogenesis NLRP3 deficiency does limit iNOS expression in the skin.

In addition to finding that NLRP3 knockout mice developed less severe disease, we also

found that inhibitors of the NLRP3 inflammasome protected mice from developing the larger

lesions caused by cytotoxic CD8+ T cells. MCC950 is a small molecule that selectively inhibits

the NLRP3 inflammasome and attenuates disease severity in a number of experimental autoin-

flammatory disease models, including murine experimental autoimmune encephalomyelitis

and cryopyrin-associated autoinflammatory syndrome [44]. Glyburide, a drug commonly

used in type 2 diabetes, can also prevent NLRP3-dependent IL-1β production [45]. Intrigu-

ingly, both MCC950 and glyburide prevented the development of severe lesions in leishmania-

infected mice. Importantly, both genetic and pharmacological inhibition with NLRP3 inflam-

masome activation blocked immunopathology while keeping immunoprotective responses

intact as observed by similar production of IFN-γ by T cells and equivalent parasite numbers

in the skin. Particularly important for translation of our findings in mice to patients, glyburide

also inhibited production of IL-1β in infected human lesion biopsies, indicating that produc-

tion of IL-1β in human leishmania lesions is also dependent on NLRP3. Together, these results

demonstrate that pharmacological blockade of the NLRP3 inflammasome dampens the immu-

nopathology caused by cytotoxic CD8+ T cells, and may be an effective strategy to ameliorate

disease in L. braziliensis patients.

The role of neutrophils in cutaneous leishmaniasis is complex, and depends upon particular

host-parasite combinations, as well as the stage of the infection [52]. Thus, they can promote

increased protection, but in other circumstances promote increased susceptibility [53–55],

[56,57]. However, in chronic leishmaniasis it appears that neutrophils are primarily associated

with increased disease [23,26,27,30], which occurs in the severe leishmanial lesions that

develop due to excessive CD8+ T cell cytolysis. Persistent recruitment of neutrophils, which in

our mouse model is associated with increased expression of CCL3 and CXCL1, drives pathol-

ogy in other types of infections as well [58], by releasing matrix metalloproteases, reactive oxy-

gen species, and myeloperoxidase all of which are significantly increased in L. braziliensis
human biopsies in comparison to normal skin [24]. Notably, neutrophil-released effector mol-

ecules amplify the response of neutrophils and increase neutrophil recruitment to sites of

inflammation, thereby promoting tissue damage [59]. In addition, cytokines, pathogen-associ-

ated molecular patterns and DAMPs present at inflammatory sites prolong the life span of

neutrophils, contributing to chronic inflammation [60] [61] [62]. In addition to directly pro-

moting disease, here we found that neutrophils are a major source of IL-1β during chronic

infection. Thus, the recruitment of neutrophils may lead to a feed-forward loop that amplifies

and sustains the inflammation in the lesions of cutaneous leishmaniasis patients.
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CD8+ T cell cytotoxicity is damaging in many conditions, including drug-induced cutaneous

hypersensitivity [17], experimental cerebral malaria, Trypanosoma cruzi-elicited cardiomyopathy

and Coxsackievirus B3-induced myocarditis [2–6], and contributes to the development of

artherosclerotic disease, rheumatoid arthritis, chronic kidney disease, diabetes and atopic derma-

titis [7–16]. Whether the inflammation mediated by CD8+ T cell cytotoxicity is dependent on

inflammasome activation in those conditions remains to be determined, although IL-1β has

been implicated in driving disease severity in some of these instances [32,63–66]. Particularly rel-

evant to our findings, IL1b mRNA levels are decreased in perforin or granzyme B deficient mice

compared to WT mice in a mouse model of atherosclerosis [67]. Interestingly, cytotoxicity is

enhanced in psoriatic lesions of human patients [31,68] and patients with psoriasis have been

successfully treated with anakinra [69,70], further suggesting that cytotoxicity may drive IL-

1-induced inflammation in this condition. Taken together, these findings suggest that the mech-

anism of inflammation induced by cytotoxic CD8+ T cells is not unique to L. braziliensis infec-

tion and may contribute to immunopathology in several other diseases.

Therapy for cutaneous leishmaniasis can be toxic and is often ineffective. This may in part

be due to the fact that the drugs target the parasites but not the immunopathologic responses

mediating some of the most severe forms of the disease. Using a combination of murine mod-

els and studies in cutaneous leishmaniasis patients, we have identified the NLRP3 inflamma-

some and IL-1β as components of the pathologic response that occurs as a consequence of

CD8+ T cell cytotoxicity in severe forms of leishmaniasis. Importantly, these immune re-

sponses do not have an effect on parasite numbers. Furthermore, patients treated early during

L. braziliensis infection are surprisingly less responsive to drug treatment when compared with

patients that have already developed more severe lesions [71]. These patients also already have

evidence of increased IL-1β [24]. Therefore, blocking IL-1β might be a valuable strategy to

treat patients at the early onset of disease. Thus, blocking IL-1β with drugs currently being

used clinically for other chronic diseases, such as anakinra and canakinumab, or inhibiting

NLRP3 inflammasome activation, in combination with anti-parasitic drugs would ameliorate

disease severity while sparing immunoprotective responses in cutaneous leishmaniasis. In

summary, this work reveals a previously unrecognized link between CD8+ T cell mediated

cytotoxicity and the well-known pathway of IL-1β mediated inflammation, which has impor-

tant implications for patients with severe forms of cutaneous leishmaniasis.

Methods

Ethics statement

This study was conducted according to the principles specified in the Declaration of Helsinki

and under local ethical guidelines (Ethical Committee of the Maternidade Climerio de Oli-

veira, Salvador, Bahia, Brazil; and the University of Pennsylvania Institutional Review Board).

This study was approved by the Ethical Committee of the Federal University of Bahia (Salva-

dor, Bahia, Brazil)(010/10) and the University of Pennsylvania IRB (Philadelphia, Pa)

(812026;823847). All patients provided written informed consent for the collection of samples

and subsequent analysis. This study was carried out in strict accordance with the recommen-

dations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of

Health. The protocol was approved by the Institutional Animal Care and Use Committee, Uni-

versity of Pennsylvania Animal Welfare Assurance Number 803457.

Patients and lesion biopsies

All cutaneous leishmaniasis patients were seen at the health post in Corte de Pedra, Bahia, Bra-

zil, which is a well-known area of L. braziliensis transmission. The criteria for diagnosis were a
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clinical picture characteristic of cutaneous leishmaniasis in conjunction with parasite isolation

or a positive delayed-type hypersensitivity response to leishmania antigen, plus histological

features of cutaneous leishmaniasis. Prior to therapy, biopsies were collected at the border of

the lesions using a 4 mm punch before therapy. Biopsies were treated with collagenase for 90

mins at 37˚C/5% CO2, dissociated and passed through a 50 μm Medicon filter (BD phamin-

gen). Peripheral blood mononuclear cells (PBMC) were obtained from heparinized venous

blood layered over a Ficoll-Hypaque gradient (GE Healthcare), then washed by centrifugation

and resuspended in RPMI media.

Cytokine assessment in human skin

Biopsies were either cultured for assessment of IL-1β, IL-6 and IL-10 production or used

directly ex vivo for flow cytometry. Biopsies from normal skin or leishmania lesions were not

processed and the entire punch biopsy was cultured for 48 hours at 37˚C/5% CO2 in RPMI

supplemented with 10% human AB serum, 2 mM glutamine, 200 U/ml penicillin, and 200 μg/

ml streptomycin. Where specified, the biopsies were cut into two pieces and half of the biopsies

were cultured in media containing vehicle (DMSO) or 200μM of glyburide (SIGMA). Cyto-

kine levels in the supernatants were then measured in ELISA assays (R&D Systems) according

to the manufacturer’s instructions. For flow cytometry analysis, cells were stained immediately

after dissociation.

Mice

BALB/c and C57BL/6 mice (6 weeks old) were purchased from Charles River, and RAG-/-

(B6.12957-RAG1tm1Mom) and perforin-/- (C57BL/6-Prf1tm1Sdz) were purchased from The

Jackson Laboratory. C57BL/6 Caspase-1/11-/- mice [72] and the NLRP3-/- mice [73] were

provided by Dr. Richard Flavell (Yale University). All mice were maintained in a specific path-

ogen-free environment at the University of Pennsylvania Animal Care Facilities.

Parasites and LCMV

L. braziliensis parasites (strain MHOM/BR/01/BA788) and L. major parasites (Friedlin) were

grown in Schneider’s insect medium (GIBCO) supplemented with 20% heat-inactivated

FBS, 2 mM glutamine, 100 U/ml penicillin, and 100 μg/ml streptomycin. Metacyclic enriched

promastigotes were used for infection [74]. Mice were infected with either 105 L. braziliensis
or 2x106 L. major in the left ear, and the course of lesion progression was monitored weekly

by measuring the diameter of ear induration with digital calipers (Fisher Scientific). For

LCMV infections, mice were infected with 2×105 PFU of LCMV Armstrong strain by i.p.

injection.

Cell purification and adoptive transfer

Splenocytes from C57BL/6 WT or perforin-/-, mice were collected, red blood cells lysed with

ACK lysing buffer (LONZA) and CD8+ T cells were purified using a magnetic bead separation

kit (Miltenyi Biotec). Three million CD8+ T cells were transferred into RAG mice that were

subsequently infected with L. braziliensis. Mice reconstituted with CD8+ T cells received 4

injections of 250 μg of anti-CD4 within the first 2 weeks.

Ear preparation

Infected and uninfected ears were harvested, the dorsal and ventral layers of the ear separated,

and the ears incubated in RPMI (Gibco) with 250 μg/mL of Liberase (Roche) for 90 mins at
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37˚C/5% CO2. Following incubation, the enzyme reaction was stopped using 1mL of RPMI

media containing 10% FBS. Ears were dissociated using a cell strainer (40 μm, BD Pharmin-

gen) and an aliquot of the cell suspension was used for parasite titration.

Parasite titration

The parasite burden in the ears was quantified as described previously [75]. Briefly, the

homogenate was serially diluted (1:10) in 96-well plates and incubated at 26˚C. The number of

viable parasites was calculated from the highest dilution at which parasites were observed after

7 days.

Flow cytometric analysis

Cell suspensions from mice were incubated with PMA (50 ng/mL), ionomycin (500 ng/mL)

and Brefeldin A (10 μg /mL) (all from SIGMA) for IFN-γ and granzyme B intracellular stain-

ing. Cells suspensions were used directly ex vivo for pro-IL-1β intracellular staining. Before

surface and intracellular staining, cells were washed and stained with live/dead fixable aqua

dead cell stain kit (Molecular Probes), according to manufacturer instructions. Cell suspen-

sions from human skin or PBMC were stained with flow cytometry antibodies directly ex vivo.

All flow cytometry analysis was performed using the FlowJo Software.

IL-1β assessment in mouse skin

Naive ears and L. braziliensis infected ears from RAG mice with no cells or RAG+CD8 mice

were excised and the ear sheets separated and incubated intact for 48 hours in complete RPMI.

Supernatants were used for mouse IL-1β ELISA (Biolegend) according to the manufacturer’s

instructions.

Antibodies and treatments

2–3 weeks post infection of RAG mice with L. braziliensis or 10 days post LCMV infection in

C57BL/6 mice infected with L. major, treatment with either monoclonal antibodies or drugs

commenced. Mice treated with anti-IL-1R, anti-IL-1α or anti-IL-1β (all from BioXcell)

received 500 μg of antibody i.p. twice a week until the termination of the experiment. Mice

were treated with 50mg/Kg of anakinra (Sobi) i.p. every day throughout the course of the

experiment or 10mg/Kg of MCC950 (Sigma) and 5μM of glyburide (Sigma) i.p. every other

day until the termination of the experiment. For imiquimod (Perrigo) treatment, the mouse

flank was shaved the day before the first imiquimod application. WT or perforin-/- mice were

treated with 62.5mg of imiquimod (5%) in the flank and in the ear for 6 consecutive days.

Mice were euthanized on the 7th day and ear were used for flow cytometry directly ex vivo as

described above.

Flow cytometry antibodies

Mouse: anti-CD45.2 APC-AlexaFluor 750, anti-CD11b eF450, anti-CD11c FITC, anti-F4/80 PE-

Cy7, anti-CD3 eFluor 450, anti-IL-1β pro-form and anti-IFN-γ PeCy7 (all from eBioscience).

Anti-CD4 APC-Cy7 and Ly6C PerCP-Cy5.5 (BD Pharmingen), anti-CD8β PerCPCy5.5 and

anti-Ly6G APC (Biolegend) and anti-granzyme B APC (Invitrogen). Human: anti-CD11b

PeCy7, anti-IL-1β PE, anti-CD3 APCCy7 and anti-CD8a PeCy5.5 (all from eBioscience). Anti-

granzyme B APC (Invitrogen).
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RNA isolation, quantitative real-time PCR and transcriptional profiling

The ear tissue was homogenized using a tissue homogenizer (FastPrep-24, MP Biomedical),

and total RNA was extracted using the RNeasy Mini kit (QIAGEN) according to the manufac-

turer’s instructions. RNA was reverse transcribed using high capacity cDNA Reverse Tran-

scription (Applied Biosystems). Real-time RT-PCR was performed on a ViiA 7 Real-Time

PCR System (Applied Biosystems). Relative quantities of mRNA were determined using SYBR

Green PCR Master Mix (Applied Biosystems) and by the comparative threshold cycle method,

as described by the manufacturer. mRNA levels for each sample were normalized to Ribosomal

protein S14 genes (RPSII) and displayed as fold induction over uninfected skin. Primers were

designed using Primer Express software (version 2.0; Applied Biosystems); Il1b, forward, 50-

TTGACGGACCCCAAAAGAT-30, and reverse 50-GATGTGCTGCTGCGAGATT-30; Il1a,

forward 5’-TTGGTTAAATGACCTGCAAC -3’, and reverse 5’-GAGCGCTCACGAACAGTT

G-3’; Ccl3, forward, 50- TGCCCTTGCTGTTCTTCTCT-30, and reverse 50- GTGGAATCTTC

CGGCTGTAG-30, Ccl2, forward, 50- GCTTCTGGGCCTGCTGTTCA-30, and reverse 50- AGC

TCTCCAGCCTACTCATT-30; Ccl5, forward, 50- GCAGCAAGTGCTCCAATCTT-30, and

reverse 50-CAGGGAAGCGTATACAGGGT-30; Ccl7, forward, 50- AGGATCTCTGCCACGC

TTC-30, and reverse 50- TTGACATAGCAGCATGTGGAT-30; Cxcl1, forward, 50- GCACCCA

AACCGAAGTCATA-30, and reverse 50- CTTGGGGACACCTTTTAGCA-30; Cxcl4, forward,

50- CCATCTCCTCTGGGATCCAT-30, and reverse 50- CCATTCTTCAGGGTGGCTAT-30.

For transcriptional profiling, cRNA was generated from 10 normal skin and 25 lesion biopsy

samples as described previously [24]. Data is deposited on the Gene Expression Omnibus

(GEO) database for public access (GSE number GSE55664).

Statistical analysis

Data are presented as mean ± standard error or individual samples. For mouse and human

experiments statistical significance was determined using the two-tailed unpaired Student’s

t-test, with the exception of paired t-test that was used for human experiments in which the

same patient sample was compared between different treatments. Pearson correlation coeffi-

cient was used to determine correlation between LOG2 expressions of genes obtained from

human skin transcriptional profiling. All statistical analysis was calculated using Prism soft-

ware (GraphPad). Differences were considered significant when p� 0.05 (�), p� 0.01 (��) or

p� 0.001 (���).

Supporting information

S1 Fig. Neutrophils are the major source of IL-1β in the skin of RAG+CD8 mice. RAG-/-

mice were infected with L. braziliensis in the ear, and reconstituted with CD8 T cells or did not

receive cells. Seven weeks post infection mice were euthanized and the infected ears were

digested and used for flow cytometric analysis. Depicted are representative contour plots and

bar graph for intracellular staining for IL-1β within (a) neutrophils, (b) monocytes, (c) den-

dritic cells and (d) macrophages. Frequency of neutrophils present in the skin of infected mice

was determined directly ex vivo at 7 weeks post infection. Depicted are (e) contour plots (f)

bar graph for the frequency of neutrophils. IL-1β expressing CD11b+ cells were gated and the

proportion of neutrophils, monocytes, dendritic cells and macrophages was determined and is

represented in a (g) pie chart. Representative data from three or more independent experi-

ments (n = 3 to 5 mice per group) with similar results are presented. �p� 0.05 or ���p� 0.001;
ns, non-significant.

(TIF)
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S2 Fig. Increased CCL3 and CXCL1 in L. braziliensis lesions is dependent on CD8 T cell.

RAG-/- mice were infected with L. braziliensis in the ear, and reconstituted with CD8 T cells

or did not receive cells. At 7 weeks post infection mice were euthanized and mRNA levels for

CCL2, CCL3, CCL5, CCL7, CXCL1 and CXCL4 were assessed. mRNA data is represented as a

fold change (FC) over expression in naïve mice. Data from two independent experiments

(n = 6 to 9 mice per group) are presented. ��p� 0.01.

(TIF)

S3 Fig. IL-1β production after imiquimod treatment is dependent on perforin. (a) WT or

perforin-/- mice were shaved in the flank and imiquimod or control cream was applied to the

ear and flank skin for 6 consecutive days. On the 7th day, mice were euthanized and the fre-

quency of (b) IL-1β expressing CD11b+ cells in the ear were determined by flow cytometry.

Representative data from 2 independent experiments (n = 3 mice per group) with similar

results are presented. �p� 0.05.

(TIF)

S4 Fig. IL-1 delays lesion progression. BALB/c mice were infected with 105 L. braziliensis in

the ear and treated with either anti-IL-1 receptor (anti-IL-1R) monoclonal antibody or isotype

(CTR); (a) ear thickness was assessed weekly and (b) parasite titration was determined 4 weeks

post infection. RAG-/- mice were infected with L. braziliensis in the ear, and reconstituted

with CD8 T cells or did not receive cells. At 3 weeks post infection mice were treated anakinra

or were left untreated; (c) ear thickness was assessed weekly; (d) parasite burden in the lesions

at 6 weeks post infection. Graphs are data from 1 (a and b) or 2 (c and d) independent experi-

ments (n = 5 mice per group) with similar results are presented. �p� 0.05; ��p� 0.01.

(TIF)

S5 Fig. NLRP3 deficiency does not affect LCMV specific responses in CD8 T cells. WT or

NLRP3-/- mice were infected with 2×105 PFU of LCMV Armstrong strain by i.p. injection.

8 days post infection, mice were euthanized, the spleens were digested and stimulated with

LCMV-peptide pool for 6 hours. Intracellular IFN-γ and TNF expression was determined by

flow cytometry directly ex vivo. Depicted are (a and c) representative contour plots and (b and

d) bar graph for IFN-γ and TNF expression within CD8 T cells. Data are representative from

two independent experiments experiment with 3–7 mice per group.

(TIF)

S6 Fig. Treatment of mice with NLRP3 inhibitors does not affect iNOS expression in the

skin. WT or NLRP3-/- C57BL/6 mice were infected with L. major in the ear, and 2 weeks later

mice were co-infected with 2×105 PFU of LCMV Armstrong strain by i.p. injection. Five

weeks post infection with L. major, mice were euthanized, the lesions were digested and intra-

cellular iNOS expression was determined by flow cytometry directly ex vivo. Depicted are (a)

representative contour plots and (b) bar graph for iNOS expression within CD11b+ cells. Data

are representative from two independent experiments experiment with 4–5 mice per group.
��p<0.01.

(TIF)

S7 Fig. Immunopathology caused by CD8 T cells is NLRP3-dependent. RAG-/- mice were

infected with L. braziliensis in the ear, and reconstituted with CD8 T cells or did not receive

cells. At 2 weeks post infection mice were treated with MCC950, glyburide or vehicle; (a) ear

thickness was assessed weekly; (b) parasite burden in the lesions. Graphs are data from 2 inde-

pendent experiments (n = 5 mice per group) with similar results are presented. �p� 0.05.

(TIF)
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S8 Fig. Cytotoxic markers with IL1B mRNA levels in lesions from L. braziliensis infected

patients. Log2 expression of (a) IL1B and (e) IL1A in normal skin and L. braziliensis patients’

lesions. Data obtained from 10 normal skin and 25 lesions. Log2 expression of GZMB and (b)

IL1B or (f) IL1A, GZMA and (c) IL1B or (g) IL1A, and PRF1 and (d) IL1B or (h) IL1A in l. bra-
ziliensis patients’ lesions. Data obtained from 25 skin lesions [24]. ��p<0.01; ���p� 0.001.

(TIF)
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