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Abstract 

Background:  While microbiomes in industrialized societies are well characterized, indigenous populations with 
traditional lifestyles have microbiomes that are more akin to those of ancient humans. However, metagenomic data in 
these populations remains scarce, and the association with soil-transmitted helminth infection status is unclear. Here, 
we sequenced 650 metagenomes of indigenous Malaysians from five villages with different prevalence of helminth 
infections.

Results:  Individuals from villages with higher prevalences of helminth infections have more unmapped reads and 
greater microbial diversity. Microbial community diversity and composition were most strongly associated with dif-
ferent villages and the effects of helminth infection status on the microbiome varies by village. Longitudinal changes 
in the microbiome in response to albendazole anthelmintic treatment were observed in both helminth infected and 
uninfected individuals. Inference of bacterial population replication rates from origin of replication analysis identified 
specific replicating taxa associated with helminth infection.

Conclusions:  Our results indicate that helminth effects on the microbiota were highly dependent on context, and 
effects of albendazole on the microbiota can be confounding for the interpretation of deworming studies. Further-
more, a substantial quantity of the microbiome remains unannotated, and this large dataset from an indigenous 
population associated with helminth infections is a valuable resource for future studies.
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Introduction
Industrialization is associated with reduced diversity 
of the microbiome in the human population [1], which 
could influence a range of physiological processes includ-
ing nutrition, metabolism, immunity, neurochemistry, 
and drug metabolism [2]. Traditional indigenous popula-
tions have substantially greater microbial diversity than 
individuals living in industrialized societies. Nonetheless, 
our current knowledge of the human gut microbiome [3] 
is overrepresented by data available from industrialized 
countries and does not fully address the undersampling 
of indigenous populations.
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Throughout evolution, helminths have coexisted with 
the gut microbiota in their mutual host [4], and the 
reduced prevalence of helminth infections from industri-
alized societies could contribute to the “hygiene hypoth-
esis” [5]. While the effects of helminth colonization on 
the human gut microbiota have been studied, the results 
reported have been inconsistent. Some studies found that 
helminth colonization changes gut microbial diversity 
and composition and/or a shift in abundance of certain 
bacterial taxa [6–12], while others showed no apparent 
changes in gut microbial profiles [13, 14]. These divergent 
conclusions could be attributed to different confound-
ers from different geographical locations (e.g., Malaysia 
[6, 12], Indonesia [9], Liberia [9], Tanzania [11], Western 
Kenya [10], and Ecuador [13]); different prevalence of 
helminth species (e.g., Trichuris sp. [13], hookworm [14], 
Ascaris sp. [10], Strongyloides sp. [8], and Schistosoma 
spp. [15]), as well as different approaches taken (natural 
or experimental infection, types of sequencing method, 
and analysis approaches). Additionally, the direct impact 
of anthelmintic treatment on the gut microbiome is 
unclear. While some studies found differences follow-
ing deworming treatment [10, 12], others have found 
no impact of treatment on gut microbiota profiles [13]. 
Other studies that examined anthelmintic albendazole 
effects on the gut microbiota utilize primarily 16S rRNA 
sequencing [9, 10, 13, 16, 17]. Hence, a large study incor-
porating metagenomic sequencing with helminth infec-
tion status, albendazole treatment, and additional control 
groups may provide greater insights into these complex 
interactions.

Most of the helminth studies mentioned above utilized 
16S rRNA sequencing to characterize the gut microbiota, 
while shotgun metagenomic approaches enable higher 
taxonomic resolution, at the species or strains level, and 
can identify not only bacteria but also archaea, fungi, and 
viruses [18, 19]. However, incomplete reference databases 
make it a challenge to profile uncharacterized microor-
ganisms. Recently, an approach to assembling sequenc-
ing reads into contigs and binning them into putative 
genomes, known as metagenome-assembled genomes 
(MAGs), has enabled retrieving semi-complete genomes 
directly from samples without the need of culturing 
organisms [20, 21]. The Unified Human Gastrointestinal 
Genome (UHGG) established an integrated catalog of 
prokaryotic genomes containing 204,938 nonredundant 
genomes that represent 4644 prokaryotic species [3] by 
combining recent studies with large-scale assembly of 
MAGs from human microbiome data [3, 21, 22] as well as 
two culture-based studies that sequenced genomes from 
cultivated human gut bacteria [23, 24]. The Human Ref-
erence Gut Microbiome (HRGM) catalog expanded on 
UHGG to include underrepresented Asian metagenomes 

from Korea, India, and Japan [25] and added 780 new spe-
cies from the newly assembled genomes [25]. However, 
Southeast-Asian countries remain underrepresented.

In this study, we generated shotgun metagenomics 
data from 650 Malaysian stool samples to investigate 
helminth-gut microbiome interactions by both cross-
sectional and longitudinal analyses. The large sample size 
allowed us to examine these interactions in five different 
villages from different locations with different lifestyles. 
Examination of anthelmintic-treated uninfected indi-
viduals in the longitudinal phase enabled assessment of 
albendazole effects on the gut microbiome independent 
of helminths. Metagenomic data enabled investigation on 
the replication rates of individual bacterial species under 
different conditions. Since a substantial quantity of the 
microbiome remains undescribed, this large dataset from 
indigenous populations with traditional lifestyles from 
the underrepresented South East Asian region provides 
new insights into helminth-gut microbiome interactions 
and more comprehensive metagenomic sequences for 
future human gut microbiome studies.

Results
Gut microbiome analysis of indigenous Malaysians 
and urban controls
To identify and characterize helminth-associated micro-
biome effects, this study consisted of a cross-sectional 
component that compares urban individuals (n = 56) 
living in Kuala Lumpur (KL) with indigenous Orang 
Asli (OA) (n = 351) from five different villages (Figs. S1 
and S2), as well as a longitudinal component to examine 
changes to the microbiome after anthelmintic (albenda-
zole) treatment. A total of 650 fecal samples (including 
longitudinal samples) were processed for metagenomic 
sequencing, resulting in 11,480,206,516 paired reads after 
quality control and contamination removal (Supplemen-
tary Fig. S3). We compared different OA villages, which 
have different prevalence of soil-transmitted helminth 
infections (Supplementary Figs. S1 and S2). In the longi-
tudinal phase of the study, consented OA subjects were 
treated with 400 mg albendazole for 3 consecutive days 
after collection of the first fecal sample. At 21 and 42 days 
following treatment, additional fecal samples were col-
lected; however, this phase of the study was disrupted by 
the COVID-19 pandemic, reducing the number of paired 
samples available. KL subjects were not treated with 
albendazole, and they provided only one sample. Ques-
tionnaire data were collected and analyzed for some of 
the study subjects (n = 340).

When we first mapped the metagenomic sequences 
to RefSeq (i.e., bacteria, protozoa, fungi, viral, archaea 
genomes), we observed a very low percentage of mapped 
reads (median: 41.6%). However, when we mapped the 
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sequences to databases that incorporate MAGs (i.e., 
HRGM [25] and UHGG [3], the percentage of sequenc-
ing reads mapped to HRGM (median: 91.5%) and UHGG 
(median: 87.9%) was much higher than RefSeq (Fig. 1A). 
Additionally, the percentage of mapped reads to all three 
databases was higher in KL subjects than the OA popu-
lation (HRGM: p = 2.6e−11; UHGG: p = 1.2e−07; Ref-
Seq: p = 2e−07) (Fig. 1A), indicating that there are more 
unknown microbial genomes in the OA population.

Utilizing HRGM, we determined the core microbiota 
for the Malaysian population and found that 237 core 
bacterial species were 100% shared among the subjects 
(Fig. 1B; Supplementary Figs. S4 A–E and S5 A–C). The 
most abundant phylum was Firmicutes A, the majority of 
which were uncultured species [3] (Fig. 1B). Agathobac-
ter rectalis, Blautia_A wexlerae, and Agathobacter faecis 
were the main species from Firmicutes A (Fig. 1B). Using 
a cross-validated random forest model to identify core 
microbiota species driving the variation between OA vs 
KL subjects, we achieved a mean prediction accuracy of 
98.05% at a kappa of 96.06% (out-of-bag error = 1.8%). 
Megamonas funiformis, Phocaeicola plebeius A, Bacte-
roides stercoris, Phocaeicola massiliensis, and HRGM 
Genome 3145 were the top five predictors between 
OA and KL subjects (Supplementary Fig. S6 A–C). Of 
these, HRGM Genome 3145, Gemmiger sp900539695, 
and Blautia A sp000436615 were more abundant in OA 
subjects, while Megamonas funiformi, Phocaeicola ple-
beius A, and Bacteroides stercoris were more abundant 
in KL subjects (Supplementary Fig. S6 A–C). The bac-
terial species with the largest variation (cutoff 6.0 for 
the coefficient of variation) among the core gut micro-
biota is shown in Supplementary Fig. S7A. To control 
for covariates, we utilized (MaAsLin2) to identify bac-
terial taxa differentially abundant between OA and KL 
subjects that are independent of village, age, and sex. 
Fourteen bacterial species, of which many are unchar-
acterized, including HRGM_Genome_2427 (p = 0.009), 
CAG 964.sp000435335 (p = 0.009), and Ruminococcus_E 
sp003438075 (p = 0.009), are more abundant in OA sub-
jects, whereas HRGM_Genome_0171 (p = 2e−4) and 

HRGM_Genome_3486 (p = 0.009) are more abundant in 
KL subjects (Fig. 1C and Supplementary Table S1).

The Orang Asli live in different geographical settings 
and have distinctive cultures and lifestyles. We found 
that KL subjects have higher mapped reads than all 
OA villages (Fig.  1D; Supplementary Fig. S7 B and C), 
and the percentage of mapped reads from both villages 
Rasau (p = 2e−16) and Legong (p = 2e−16) was mark-
edly lower compared to KL (Fig. 1D; Supplementary Fig. 
S7 B and C). To compare pairwise beta diversity at the 
species level within each village group to the KL cohort 
and to use a reference independent strategy as an alter-
native approach, we assessed Jaccard distances using 
21 nucleotide k-mers and genus-level annotations from 
HRGM, which showed similar results (Fig. 1E). In addi-
tion, we observed that Rasau and Legong had the high-
est beta diversity and nucleotide dissimilarity compared 
to KL (Fig. 1E). Moreover, comparison of bacterial com-
munities at species level across geographical locations 
using Jaccard distance revealed substantial differences 
between villages (ADONIS: p = 0.001, R2 = −0.073; 
analysis of similarity [ANOSIM]: p = 0.001, R = 0.215) 
(Fig.  1F, Supplementary Table S2). From the principal 
coordinate analysis (PCoA) plot (Fig.  1F), we observed 
clustering of the samples from Rasau and Legong. Con-
versely, the samples from Bangkong and Sepat were 
clustered together with KL, while Judah exhibited a 
more dispersed distribution. Hence, OA subjects in 
Rasau and Legong were more similar in gut microbial 
composition and were different from KL and other vil-
lages. Equivalent beta-diversity results were observed 
with other k-mers sketches (31 and 51) and at the spe-
cies level (Fig. S8 A–G).

Village‑dependent effects of helminth infection on the gut 
microbiome
We determined the infection intensity and the preva-
lence of intestinal helminth infection among the 351 OA 
subjects and found that Trichuris infection (61.8%, n = 
217) was the most predominant, followed by hookworm 
(20.8%, 73) and Ascaris (17.9%, 63) infections (Fig.  2A). 

(See figure on next page.)
Fig. 1  Variation in the gut microbiome of 650 Malaysians from Orang Asli (OA) villages and Kuala Lumpur (KL). A Violin plots illustrating the 
percentage of mapped reads with RefSeq (i.e., bacteria, protozoa, fungi, viral, archaea), Unified Human Gastrointestinal Genome (UHGG), and human 
reference gut microbiome (HRGM) databases between OA (green) and KL (purple) samples. B Relative abundance of phyla from the 237 species of 
the core gut microbiota of OA and KL populations (left). The relative abundance of the main species from Firmicute A (right). C Bar plot shows the 
bacterial species that are differentially abundant between Orang Asli and Urban cohort from Kuala Lumpur based on the output of the microbiome 
multivariable association with linear models 2 (MaAsLin2). The length of the bar corresponds to the value of the significant association. Red color 
represents the bacterial species associated with the Orang Asli subjects, whereas blue color represents the bacterial species associated with the 
urban cohort. D The percentage of mapped reads to the HRGM database for samples from different OA villages and KL. E Comparison of pairwise 
beta diversity at species level within group to the KL cohort, assessed by Jaccard distance based on the distance of nucleotide k-mer sketches k = 
21 (top) and genus-level classification (bottom). F Principal coordinates analysis (PCoA) of Jaccard distance based on the gut metagenomic profiles 
(species levels) in all samples, with individuals from different geographical locations denoted by specific color (ADONIS: p = 0.001, R2 = 0.073; 
ANOSIM: p = 0.001, R = 0.215). The p-values for A, D, and E are computed using Wilcoxon rank-sum test
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Fig. 1  (See legend on previous page.)
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The distribution of age and gender of these subjects is 
shown in Fig. S9 A and B. The overall prevalence of hel-
minth infection was 67.2% (n = 236) (Fig. 2A), and infec-
tion intensity was summarized in Fig. S9C. For beta 
diversity at species level, based on PCoA, there were dif-
ferences in gut microbiome between infected and unin-
fected individuals; however, statistically, the effect size 
was small (ADONIS: p = 0.001, R2 = 0.024; ANOSIM: p 
= 0.001, R = 0.145) (Fig.  2B, Supplementary Table S2), 
which was also the case for Bray-Curtis distance and 
nonmultidimensional scaling (NMDS) ordination (Sup-
plementary Fig. S10 A–C).

For alpha diversity at species level, we observed higher 
species richness in the samples from infected subjects (p 
= 2.50e−5) (Fig. 2C). This relationship was confirmed by 
a linear mixed model analyses controlling for village as 
a random effect (p = 1.18 × 10−6). Individuals infected 
with either single (p = 0.005) or multiple species of hel-
minths (p = 0.033) had higher species richness (Fig. 2C). 
Trichuris-infected OA (p = 9.70e−06) had higher spe-
cies richness than uninfected (Fig.  2C), including those 
infected at light (eggs per gram [epg] < 999; p = 0.045) 
and moderate (epg < 9,999; p = 8.34e−07) intensities 
(Fig.  2C). Other alpha-diversity indices (i.e., Shannon 
and Simpson, at species level as well) are shown in Sup-
plementary Fig. S11 A–H, and results for each village are 
shown in Supplementary Fig. S12 A–E. The prevalence 
of helminth infection varied according to village and 
was highest in Rasau (89.6%, n = 43 of 48), followed by 
Legong (81.0%, 81 of 100), Judah (71.6%, 83 of 116), Sepat 
(55.0%, 22 of 40), and Bangkong (14.9%, 7 of 47) (Fig. 2D). 
As Trichuris was the predominant helminth, the preva-
lence of Trichuris was similar for Rasau (81.3%, 39 of 48), 
Legong (77.0%, 77 of 100), Judah (65.6%, 76 of 116), Sepat 
(50.0%, 20 of 40), and Bangkong (10.6%, 5 of 47) (Fig. 2D). 
There was no infected individual with helminths in KL. 
The two villages with the highest prevalence, Rasau (p = 
2.0e−4) and Legong (p = 8.1e−07), showed higher species 

richness compared to KL (Fig. 2E). Also, we observed that 
species richness appeared to be greater when helminth 
infections in the villages were more prevalent, which was 
similar to the order of villages for unmapped reads shown 
in Fig.  1D. To determine if Trichuris infection intensity 
was associated with unmapped reads, we performed a 
Spearman correlation test and found that the intensity of 
Trichuris infection was positively correlated (p = 3.2e−06, 
R = 0.25) with the percentage of unmapped reads to the 
HRGM database (Fig.  2F). These results indicated that 
helminth infections were associated with underrepresen-
tation in the catalog of bacterial genomes.

We next determined the relative contribution of vil-
lage and helminth infection status on the gut microbi-
ome in relation to other factors (e.g., whether they had 
probiotic food, diarrhea, or antibiotics in the past 3 
months, different age groups, and protozoa infection). 
ADONIS analysis at species level indicated that only vil-
lage (p =1.000e−4, F-value = 1.672, R2 = 0.025) and hel-
minth status (p = 0.028, F-value = 1.387, R2 = 0.010) 
had significant effects on the gut microbiome composi-
tion (Fig. 2G). Since village has the largest effect size on 
gut microbiome composition, we next used MaAsLin2 
[26] to identify bacterial species that were differentially 
abundant between Trichuris infected and uninfected 
individuals from specific villages. Importantly, we found 
that the bacterial species that were most differentially 
abundant between infected and uninfected subjects 
were unique to each village (Supplementary Fig. S13A). 
For example, Haemophilus_A.parahaemolyticus and 
Corynebacterium provencense were different in Bang-
kong and Rasau, whereas Prevotella.sp900316565 was 
different in Sepat, C941.sp004557565 and UBA10281.
HRGM_Genome_2392 in Judah, Prevotella.sp900546575 
and Prevotella.HRGM_Genome_3676 in Legong, and 
UBA1829.sp900549045 and F082.HRGM_Genome_5331 
in Rasau (Supplementary Fig. S13A). Similar patterns of 
results were obtained with ANCOM-BC (Supplementary 

Fig. 2  Effects of intestinal helminth infection status on gut microbial diversity and composition for the 351 Orang Asli individuals. A The prevalence 
of intestinal helminth infection in the OA cohort based on overall infection status, as well as specific intestinal helminth infection (i.e., trichuriasis, 
ascariasis, and hookworm infection). B Principal coordinates analysis (PCoA) of Jaccard distances based on gut microbiota profiles (species levels) 
of the OA cohort. The individuals infected and uninfected with intestinal helminths are denoted by blue and red, respectively (ADONIS: p = 0.001, 
R2 = 0.024; ANOSIM: p = 0.001, R = 0.145). C Alpha-diversity box plot of species richness based on different status of intestinal helminth infection, 
number of intestinal helminth infection, Trichuris infection, and intensity of Trichuris infection. Wilcoxon rank-sum test is used for two independent 
variables, while the Kruskal-Wallis test is used for more than two comparison groups. D The prevalence of intestinal helminth infection (top) and 
Trichuris infection (bottom) by different geographical locations. E Comparison of alpha diversity (species richness) between individuals from KL and 
specific OA villages. F Spearman correlation between the intensity of Trichuris infection and percentage of unmapped reads to the HRGM database 
(p = 3.200e−6, R = 0.250). The blue line represents the linear regression between intensity of Trichuris infection and percentage of unmapped reads. 
G Bar plot of the F statistic values from ADONIS analysis of variables that contribute to the gut microbiota composition. Colored bars indicate the 
variables that show significant effects on gut microbiota variation (p < 0.05). H Bar plot of effect size of the variables (village [p = 2.610e−08, pseudo 
R2 = 0.027], helminth infection [p = 0.029, pseudo R2 = 0.004], and interactions between helminth village [p = 0.002, pseudo R2 = 0.016]) that 
contribute significantly to the variance of the microbiota based on MDMR analysis. I Heatmap of bacterial species associated with village, helminth 
infections, and interactions from MaAsLin2. Blue for positive association and red for negative association

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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Fig. S13B). These results indicated that helminth infec-
tions may have different effects on the gut microbiome in 
different villages.

To specifically test the hypothesis that effects of hel-
minth infection on the microbiome are highly depend-
ent on village, we used multivariate distance matrix 
regression (MDMR) [27] to test for statistical interac-
tions between helminth infection and village and to cal-
culate relative effect sizes on microbiota variation at 
species level. We find that there was a significant inter-
action between village and helminth infection, and that 
the effect of village is greater than helminth infection 
status after accounting for the effects of this interaction 
(Fig. 2H).

To identify bacterial features that are significant in 
helminth-village interactions, as well as independent of 
these covariates, we used MaAsLin2 with helminth and 
village as fixed effects, to identify bacteria that are inde-
pendent and associated with the interaction between 
helminth and village. Of the 230 helminth-associated 
bacteria, more than 55% (n = 135) were associated with 
village (Fig. 2I). Hence, most of the effects of helminth-
associated bacteria are village dependent, and in different 
villages, there are different bacteria associated with hel-
minth infections. Several Lactobacillus species, including 
Lactobacillus gasseri and Lactobacillus crispatus, were 
associated with helminth infection independent of village 
(Supplementary Fig. S14 and Table S3).

Dynamic changes to the gut microbiome 
after anthelmintic treatment
Longitudinal interventional approaches provide stronger 
assessment of cause-and-effect relationships. Fecal sam-
ples analyzed at pre- and post-anthelmintic treatment 
provided insights into the effects of deworming on the 
gut microbiome. Individual subjects were grouped into 
four categories (i.e., full responders [n = 43 paired; from 
26–33,099 to 0 epg], partial responders [n = 23 paired; 

from 281–119,875 to 26–71,579 epg], nonresponders [n 
= 5 paired; from 204–1097 to 281–1632 epg], and unin-
fected [n = 58 paired]), based on the Trichuris infection 
intensity before and after deworming (Fig.  3A). While 
mixed infection was present in some individuals, hook-
worm and Ascaris infection were always cured after 
deworming (Supplementary Fig. S15A).

First, we compared pre and post samples for respond-
ers, which include both full and partial responders. PCoA 
based on Jaccard distances showed that there are dif-
ferences in gut microbiota composition at species level 
between pre and post treatment, but the effect size was 
small (ADONIS: p = 0.001, R2 = 0.014; ANOSIM: p = 
0.001, R = 0.072) (Fig.  3B, Supplementary Table S4). 
Since albendazole may have a direct effect on the micro-
biota, we next compared the gut microbiota profile pre 
and post treatment for uninfected individuals. Similar 
to the responders, PCoA based on Jaccard distances also 
indicated differences in gut microbiota composition at 
species level between pre and post samples, with a small 
effect size (ADONIS: p = 0.006, R2 = 0.012; ANOSIM: p 
= 0.001, R = 0.069) (Fig.  3C, Supplementary Table S4). 
NMDS ordination, Bray-Curtis distance matrix, and 
beta-dispersion analysis showed similar results (Supple-
mentary Figs. S16 A–E and S17 A–E, Table S4), and there 
were no significant changes to alpha diversity at species 
level between pre and post treatment (i.e., Richness, 
Shannon, Simpson) (Supplementary Fig. S15 B and C).

Using MaAsLin2 for differential abundance testing, 
we found changes of 911 bacterial species at pre and 
post treatment among responders. However, there was 
substantial overlap with changes found in pre and post 
treatment samples for uninfected individuals (658 spe-
cies, 72.2%) (Fig. 3D and Supplementary Fig. S18A), with 
only 253 taxa which were specific to the responders. For 
example, in both responders and uninfected individu-
als, the relative abundance of Collinsella sp003466125 
(p = 1.52e−08; p = 3.66e−07, respectively) and RUG013.

(See figure on next page.)
Fig. 3  Dynamic changes to the gut microbiota of 129 Orang Asli after albendazole treatment. A Line plots show changes of the infection intensity 
of Trichuris pre and post response to anthelmintic drugs stratified by full responders (n = 43), partial responders (n = 23), nonresponders (n = 5), 
and uninfected individuals (n = 58). B Principal coordinates analysis (PCoA) plot of Jaccard distances based on gut microbiota profiles (species 
levels) of responders (ADONIS: p = 0.001, R2 = 0.014; ANOSIM: p = 0.001, R = 0.072), with pre-anthelmintic treatment (blue) and post-anthelmintic 
treatment (red). C Principal coordinates analysis (PCoA) plot of Jaccard distances based on gut microbiota profiles (species levels) of uninfected 
subjects (ADONIS: p = 0.006, R2 = 0.012; ANOSIM: p = 0.001, R = 0.069) (Fig. 3C, Supplementary Table S2), with pre-anthelmintic treatment (blue) 
and post-anthelmintic treatment (red). D Venn diagram depicting the number of shared and exclusive bacteria species that are found to be 
differentially abundant (pre and post) between responders and uninfected individuals. The blue area includes 253 bacteria that are altered only 
in responders, while the yellow and mixed color area indicates the 873 bacteria that are altered in uninfected individuals. E Box plots show the 
bacterial taxa that are altered by deworming treatment in responders but not in nonresponders (host response). The differences in the abundance 
of (i) Sutterella HRGM Genome 4418 and (ii) Muricomes contorta_B in helminthic infections (left) and different groups of response (right), namely 
uninfected and responders in pre and post. F Box plots and line plots show the bacterial taxa that are associated with deworming treatment in 
both responders and nonresponders (drug response). The differences in the abundance of (i) Collinsella sp900540485 and (ii) Collinsella stercoris in 
helminthic infections (left) and different groups of response (right), namely uninfected and responders in pre and post. The p-values for E and F are 
computed using Wilcoxon signed-rank test (responders vs nonresponders) and Wilcoxon rank-sum test (helminthic infections)
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Fig. 3  (See legend on previous page.)
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sp001486445 (p = 2.53e−07; p = 3.80e−06) was reduced 
after deworming, while the relative abundance of Biloph-
ila sp900550745 increased (p = 1.33e−08; p = 5.81e−05) 
(Supplementary Fig. S18 B and C). To assess the longi-
tudinal effects of albendazole treatment, we also used 
MaAsLin2 to identify taxa altered by treatment response, 
controlling for infection status and village as fixed effects. 
Of the 576 species that were identified to be associated 
with these covariates, the majority were associated with 
village (n = 305) and with infection status (n = 200), and 
only 69 species were associated with treatment response, 
of which only four species were independent of village 
and infection status (Supplementary Fig. S19A). Of the 
four, only one (CAG.245.sp900552135) showed a statis-
tically significant (Supplementary Fig. S19B) association 
with treatment response but independent of village or 
infection status (Supplementary Table S5).

Next, we used MaAsLin2 to identify bacterial taxa that 
were associated with drug response and helminth status, 
correcting for village as a covariate. There were a total 
of 293 bacteria species that were associated with drug 
response, only six of which were associated with host 
response (Supplementary Fig. S19C). There were only 
two taxa (Sutterella HRGM Genome 4418 and Muri-
comes contorta B) associated with deworming treatment 
in responders but not in nonresponders in this model. 
The Sutterella HRGM Genome 4418 (p = 8.10e−06) was 
more abundant in helminth-infected individuals, whereas 
Muricomes contorta B (p = 0.024) was more enriched in 
nonhelminth-infected individuals (Fig.  3E). In contrast, 
there were many more taxa (n = 295) that are associ-
ated with deworming treatment in both responders and 
nonresponders like Collinsella sp900540845 and Collin-
sella stercoris (Fig. 3F), which indicates that the effects of 
albendazole were greater on the bacterial communities 
than helminth infection itself (Supplementary Table S6). 
Hence, albendazole may have a substantial effect on the 
microbiota that may be an important confounding factor 
for deworming studies.

In some individuals, we conducted a follow-up study 
42 days post-anthelmintic treatment. There were no dif-
ferences in alpha diversity on day 42 (Supplementary 
Fig. S20A), and although beta-diversity analysis at spe-
cies level showed significant differences between three 

timepoints (i.e., pre, 21 days, and 42 days) (Supple-
mentary Fig. S20 B–C, Supplementary Table S7), these 
differences are driven by the pre-treatment samples (Sup-
plementary Fig. S20D). Therefore, the changes in the gut 
microbiome in both responders and uninfected individu-
als after albendazole treatment remain stable by day 42.

Bacterial replication in the context of helminth infection
Actively replicating bacteria can be identified by calcu-
lating the index of replication based on coverage trends 
of bidirectional genome replication from a single origin 
of replication. We used the algorithm growth rate index 
(GRiD) to estimate the growth rate of gut bacteria in rela-
tion to helminth infection status. Spearman correlation 
analysis on Trichuris egg burden with the growth rate of 
the bacteria identified 350 bacterial species with growth 
rate associated with Trichuris egg burden (Fig.  4 A and 
B, Supplementary Fig. S21, and Supplementary Table 
S8). Prevotella stercorea replication was most positively 
associated (p = 1.58e−14, R = 0.39) with egg burden, 
while Bifidobacterium longum (p = 1.30e-11, R = −0.35) 
and Phocaeicola vulgatus (p = 3.45e−9, R = −0.31) were 
negatively associated with egg burden. Using a linear 
mixed model of Trichuris egg burden while control-
ling for village, Prevotella stercorea and Bifidobacterium 
longum were significantly associated with egg burden 
(p = 4.89e−06 and p = 7.99e−08, respectively). The pre-
dicted replication rate of Prevotella sterorea was higher 
in Trichuris-infected individuals (p = 1.30e−09), while 
the predicted replication rate of Bifidobacterium longum 
and Phocaeicola vulgatus was notably lower in Trichuris-
infected individuals (p = 4.50e−09and p = 9.80e−09, 
respectively) (Fig. 4C).

For the longitudinal deworming component of the 
study, we observed that the growth rate of 93 bacterial 
species was different between pre and post treatment 
samples among the responders. Among these bacte-
rial species, slightly more than one-third of them (n = 
33) were also identified from the cross-sectional analy-
sis (Supplementary Fig. S22A). Spearman correlation 
analysis demonstrated that the growth rate of uncultured 
Oscillibacter sp. (p = 6.000e−04) and Phocaeicola vulga-
tus (p = 0.006) was significantly correlated with Trichuris 
burden (Supplementary Fig. S22B and Supplementary 

Fig. 4  Gut bacterial replication in the context of intestinal helminth infection. A Heatmap of the growth rate index (GRiD) score, which infers an 
index of replication for top 20 gut bacteria in relation to helminth infection status of individuals based on Spearman correlation test followed by 
false discovery rate (FDR) correction. Samples are shown in rows, by village, whereas the GRiD score of each bacterium is shown in columns. The 
first vertical side bar color codes the intestinal helminth infection status, while the second side bar indicates the infection intensity of Trichuris. 
B GRiD score correlation between bacterial species with the infection intensity of Trichuris. The bar chart shows the Spearman’s rank correlation 
coefficient. Blue and gray colors represent the positive and negative correlations respectively. C Box plots of GRiD score for Prevotella stercorea (left), 
Bifidobacterium longum (middle), and Phocaeicola vulgatus (right) in Trichuris infected and uninfected individuals. The GRiD scores of these species 
between Trichuris infected and uninfected individuals were tested using Wilcoxon rank-sum test

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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Table S9). After we verified the results by building a lin-
ear mixed model controlling for village, both uncultured 
Oscillibacter sp. (p = 0.033) and Phocaeicola_vulgatus 
(p = 0.028) were negatively associated with Trichuris 
burden, indicating more replication in responders after 
anti-helminthic treatment (Supplementary Fig. S22C). 
However, considerable portions of responder-associated 
taxa (32 out of 93) were also observed in the nonin-
fected individuals (n = 67) (Supplementary Fig. S22D). 
Therefore, it could be difficult to disentangle the effects 
of Trichuris infection and direct effects of albendazole 
treatment on the dynamics of the microbiome. Hence, 
we conducted MaAsLin2 analyses to identify bacterial 
replication (based on GRiD score) that were associated 
with Trichuris infection while controlling for treatment 
group and village. Collinsella_sp._TF06.26 (adjusted p 
= 0.004) was positively associated with Trichuris infec-
tion, while Phocaiecola vulgatus (adjusted p = 0.04), 
Burkholderia sp. K4410.MGS.135 (p = 0.04), Bacteroides 
stercoris (adjusted p = 0.04), and Phocaeicola massiliensis 
(adjusted p = 0.04) were negatively associated with Tri-
churis infection (Supplementary Table S10).

Functional gene profiles of the Orang Asli microbiota 
and the effects of albendazole treatment
We used the HUMAnN tool to investigate pathway infer-
ence and gene families with Pfam domains (Figs. S23–
S25). To adjust for covariates, we used MaAsLin2 to 
identify the pathways and gene families that were differ-
entially abundant between the following: (1) Orang Asli 
and Urban cohorts, while controlling for age and sex; (2) 
Helminth positive and negative individuals, while includ-
ing village as a covariate; and (3) Treatment response 
groups while controlling for village. Using these models, 
we find that the L-tryptophan biosynthesis superpathway 
was enriched in the Orang Asli microbiome compared 
to urban controls from KL (Supplementary Figs. S23 and 
S25A). Tryptophan, an essential amino acid, and its cat-
abolites have been suggested to affect intestinal homeo-
stasis through the aryl hydrocarbon receptor and may be 
important in inflammatory bowel diseases [28]. Hence, 
future work on microbial metabolism in the Orang Asli 
may focus on this pathway.

After controlling for village, there were no significant 
pathways differentiating helminth positive and nega-
tive individuals. Between different villages, we found the 
strongest significance for the peptidoglycan biosynthe-
sis II (Staphylococci) pathway (Supplementary Figs. S23 
and S25B). Villages with high helminth prevalence have 
individuals enriched in this pathway, but we did not find 
a significant relationship between helminth infection and 
Staphylococcus aureus abundance. This pathway may be 
important in the generation of peptidoglycan in other 

gram-positive bacteria, and the significance of the geo-
graphical difference in the abundance of this pathway 
is still unclear. We also found that the microbiome after 
albendazole treatment is enriched for the L-glutamate 
degradation V (via hydroxyglutarate) pathway (Supple-
mentary Figs. S23 and S25C), which is an indication that 
albendazole may affect the fermentation of amino acids 
in an anoxic environment. Additionally, in our gene fam-
ily enrichment analysis, our only substantial observation 
is that the phosphoenolpyruvate carboxylase gene family 
was decreased after albendazole treatment (Supplemen-
tary Figs. S2 and S25D). This also indicates how alben-
dazole can affect metabolic processes of the microbiome; 
however, the implications of these results remain unclear.

Discussion
In this study, we examined 650 stool metagenomes from 
a cohort of 351 indigenous Malaysians from five villages 
with different prevalence rates (14.9–89.6%) of helminth 
infections, along with 56 urban citizens (uninfected) liv-
ing in Kuala Lumpur City. To our knowledge, this is the 
largest study utilizing shotgun metagenomics to investi-
gate the interactions between helminth infection and the 
human gut microbiome.

We found that mapping reads to the HRGM database, 
which incorporates MAGs, increase the quality and quan-
tity of taxonomic classifications, compared to using from 
the NCBI database alone, especially for the indigenous 
Orang Asli. We also found that the microbiota is domi-
nated by Firmicutes A, which is represented by mostly 
uncultured bacteria, highlighting the underrepresentation 
of cultured bacteria from indigenous groups. This could 
be an important caveat for most of the previous studies on 
helminths and the gut microbiota, which were conducted 
using 16s rRNA sequencing [10–12, 16, 29] with the taxo-
nomic classification based on mapping to the reference 
databases Greengenes, SILVA, and Ribosomal Database 
Project. In a recent shotgun metagenomic study on 175 
Cameroonian samples, the data was also mapped onto a 
reference database from NCBI [30], and the investigators 
noted that the classification of the relative abundance of 
bacteria did not correspond to data from 16S Greengenes 
classifications for the V4 region [30]. A different study also 
indicated that 16s rRNA gene sequencing only provided a 
portion of the gut microbiota profile compared to shot-
gun metagenomics [31]. Hence, we suggest that assem-
bling a Malaysian gut microbiome reference catalog will 
provide substantial benefit for future microbiome studies, 
especially from underrepresented geographic regions, and 
for rural and indigenous populations.

In this metagenomic study, we found that intestinal 
helminth infection status was associated with higher spe-
cies richness, which was consistent with our previous 
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findings and others conducted using 16s rRNA sequenc-
ing [9, 11, 12, 16, 30, 32]. However, we did not find a sig-
nificant difference at pre and post deworming, which 
could be because of smaller sample size and could also 
be confounded by the effects of albendazole. Addition-
ally, other studies have not observed an effect of hel-
minths on microbial diversity [7, 10, 13, 16, 17, 33]. It is 
important to note that each study cohort has different 
prevalence rates for different helminth species, as well 
as distinct genetics, lifestyles, and living conditions. This 
study has a larger sample size than our previous studies 
[12, 34] and has enabled us to examine the interactions 
of helminth infection and the gut microbiome in differ-
ent villages. Indeed, village has the largest effect size on 
gut microbiome variation, followed by helminth infection 
status. Notably, villages with higher helminth prevalence 
rates also have higher microbial diversity, but in different 
villages, helminth infection is associated with differential 
abundances of distinct bacterial taxa. It is important to 
note that the different villages represent diverse envi-
ronments, practicing unique lifestyles, and have differ-
ent hygiene practices. Compared to other villages, Rasau 
and Legong villages (with higher helminth prevalence) 
are located near the forest with high exposure to the soil 
environment, which may harbor more microbes [35], 
and mouse experiments have shown that exposure to soil 
increases gut microbiota diversity [36]. From our ques-
tionnaire, a higher percentage of villagers from Rasau 
and Legong are plantation agricultural workers (Rasau: 
30.4%; Legong: 14.8%; others: < 6.7%), lack of toilet facil-
ity (52.5%; 20.8%; < 13.0%), and practice open defecation 
(46.5%; 32.0%; < 7.4%) more than other villages. As Tri-
churis eggs become infective in the soil, this may increase 
exposure to Trichuris, as well as other microbes in the 
contaminated soil, resulting in higher microbial diversity 
in different settings.

We also found that deworming helminth-negative indi-
viduals can influence the gut microbiome that overlaps 
substantially with changes in individuals responding to 
drug treatment by having reduced worm burdens. This 
indicates that albendazole may directly affect the micro-
biome, or that there are population effects that can influ-
ence uninfected people. There are four previous studies 
on albendazole [9, 10, 13, 16]. The first study conducted 
among Ecuador school children did not find any differ-
ence in bacterial composition among both Trichuris 
infected and uninfected groups after a combination of 
albendazole and ivermectin treatment [13]. In contrast, 
the second study in Indonesia found an increase of Actin-
obacteria and decrease in Bacteroidetes with albendazole 
treatment versus placebo in individuals that remained 
helminth-infected post treatment, but not in uninfected 
individuals [16]. In addition, Rosa et  al. demonstrated 

that the gut bacterial composition was altered in a hel-
minth-uninfected group in Indonesia after 2 years [9]. 
Another study in Kenya found significantly reduced Chao 
richness in uninfected individuals after deworming treat-
ment, suggesting an effect of albendazole [10]. Albenda-
zole is a prodrug that metabolizes rapidly to albendazole 
sulfoxide (the active anthelmintic compound) and alben-
dazole sulphone (the inactive compound). Some bacterial 
species (Enterobacter aerogenes NCIM 2695, Klebsiella 
aerogenes NCIM 2258, Pseudomonas aeruginosa NCIM 
2074, and Streptomyces griseus NCIM 2622) could be 
involved in metabolizing albendazole to albendazole sul-
foxide and albendazole sulphone [37]. Albendazole can 
also be metabolized by the resident microbiota in gut 
rumens in sheep and cattle [38]. Hence, the gut micro-
biota could play a crucial role in metabolizing albenda-
zole and influence drug bioavailability and efficacy on 
infected individuals. Why albendazole has lower efficacy 
against Trichuris infection than hookworm and Ascaris 
warrants further investigation [39]. Future studies could 
apply metabolomics profiling to investigate metabolite 
differences between response groups to better under-
stand the underlying mechanisms. The observation that 
the L-glutamate degradation V (via hydroxyglutarate) 
pathway was enriched after albendazole treatment and 
that the phosphoenolpyruvate carboxylase gene fam-
ily was depleted after albendazole treatment indicates 
that albendazole can affect metabolic processes, and 
future work should focus on the effects of albendazole on 
microbial metabolism.

Conclusions
We find that this metagenomic study of rural indig-
enous populations required reference databases that 
included MAGs to improve taxonomic and functional 
classification of sequencing reads. However, unmapped 
reads remain a challenge as villages with higher preva-
lence of helminth infections have more unmapped reads. 
Hence, this large metagenomic dataset from five differ-
ent villages in Malaysia with different helminth infection 
prevalences should facilitate further characterization of 
microbiome-parasite associations in other nonindustri-
alized populations. Helminth effects on the microbiome 
were village dependent, and albendazole treatment had a 
substantial effect on the microbiome. These results may 
explain some of the discrepancies from previous studies 
on helminth-microbiota interactions.

Methods
Study design and sample collection
This study consists of both cross-sectional and longitu-
dinal phases. Cross-sectional comparisons were made on 
the OA and between OA and urban cohorts (KL) living 
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in the capital city of Malaysia, Kuala Lumpur. Within 
the Orang Asli community, we studied five Orang Asli 
villages: (1) Rasau village (Perak state); (2) Judah village 
(Selangor state); (3) Sepat village (Selangor state); (4) 
Bangkong village (Selangor state); and (5) Legong village 
(Kedah state). The locations of each village are displayed 
on a map using ArcGIS (version 10.7.1) together with 
other information including states, tribes, and subtribes 
(Supplementary Fig. S1). A total number of 351 samples 
were collected from Orang Asli subjects and 56 sam-
ples from KL subjects in this cross-sectional component 
(aged 4 years and older) (Supplementary Fig. S2).

For the longitudinal phase, Orang Asli subjects who pro-
vided consent were treated with 400 mg albendazole for 
3 consecutive days after the first stool sample collection. 
Stool samples were collected from the treated subjects 
at 21 days and 42 days following anthelmintic treatment. 
However, due to the restriction during the COVID-19 
pandemic, only four Orang Asli villages were included 
in this phase, excluding Legong village. There was no 
follow-up for urban controls after the cross-sectional 
phase because they were not treated with albendazole. 
Sample selection for analysis was based on a complete 
set of paired stool samples (pre [pre-anthelmintic treat-
ment] and post [21-day post-anthelmintic treatment]) (n 
= 129) and three timepoints stool samples collection (pre, 
21 days and 42 days; n = 110). Four subject samples were 
removed from the longitudinal analysis due to incom-
plete data collection. Then, subjects were categorized into 
three groups for comparison: responders, nonrespond-
ers, and uninfected, based on their infection status before 
and after the albendazole treatment. Responders (n = 66 
paired samples) refer to individuals who were positive 
at baseline and became negative or showed reduction of 
infection intensity after deworming. Nonresponders (n 
= 5 paired samples) refer to individuals who were posi-
tive at baseline and showed increment or maintain of egg 
counts after deworming. Uninfected (n = 58 paired sam-
ples) refers to negative individuals before and after the 
treatment. Nonresponders were not included in the gut 
metagenome analysis due to insufficient sample size. The 
detailed number of samples collected at each timepoints 
was shown in Supplementary Fig. S2.

Fecal sample preparation and analysis
All the stool samples collected were divided into two por-
tions: (i) preserved in 2.5% potassium dichromate and 
stored at 4 °C for intestinal helminth infection screening 
and (ii) aliquoted in 1.5 ml cryovial tube, frozen immedi-
ately in dry ice, and kept at −80 °C for shotgun metagen-
omic analysis (Supplementary Fig. S26). To detect 
and quantify helminth infections, Kato-Katz was per-
formed. A thick smear was prepared from the fresh stool 

according to the manufacturer’s instructions (Kato-Katz 
kit, Mahidol University, Thailand) [40]. Infection inten-
sity was stratified into light, moderate, or heavy accord-
ing to WHO cutoffs [41]. Formalin ether sedimentation 
was performed according to Chin et al. (2016) [42]. Stool 
samples were considered positive if any soil-transmitted 
helminths were detected from any of these two methods. 
DNA was extracted from stool samples using Qiagen 
DNeasy PowerSoil Pro Kit (Qiagen, Hilden, Germany). 
DNA library was prepared using Illumina TruSeq DNA 
Nano Library kit (Illumina, USA). Paired-end metagen-
omic sequencing was performed on the NovaSeq 6000 S4 
platform to generate an average of 20 million paired-end 
reads per sample (range 13–35 million paired-end reads), 
with a read length of 150 bp and insert size of 350 bp.

Sequencing analysis pipeline
The overall bioinformatic analysis workflow from pre-
processing to downstream analysis is shown in Supple-
mentary Fig. S3. In brief, the whole process of quality 
filtering and trimming of the raw sequence reads was 
performed by using KneadData (version 0.7.4) inte-
grated with Trimmomatic [42], Bowtie [43], and FastQC 
[44] tools. Sequence reads were trimmed by using Trim-
momatic with default settings, based on a sliding win-
dow trimming approach (SLIDINGWINDOW:4:20) 
when average base Phred quality score over four reads 
dropped below 33 (PHRED 33). Next, sequence reads 
were mapped against reads mapping to the reference 
genome (hg37) using Bowtie2 with default parameters 
(very sensitive end-to-end alignment) to remove human 
host genome. The filtered reads were then used for the 
downstream analyses. Additionally, FastQC was used 
to perform quality checks on the raw metagenomic 
reads before preprocessing and after preprocessing to 
ensure high-quality metagenomic reads for downstream 
analysis.

For taxonomic classification, Kraken2 (version 2.1.0) 
[45], a k-mer matching algorithm classifier, was used 
for assigning taxonomic labels to the trimmed reads. 
The trimmed reads were mapped using Kraken2 against 
(1) RefSeq database (bacterial, protozoa, fungi, viral, 
and archaeal) and two MAGs integrated databases: (2) 
HRGM database, with 232,098 reference genomes [25], 
and the UHGG database, with 204,938 reference genomes 
[3] using default settings. After taxonomic classifica-
tion by Kraken2, Bayesian Re-estimation of Abundance 
with KrakEN (Bracken2) (version 2.6.0) [46] was used to 
compute the relative abundance of bacteria for each taxa 
(from phylum to species level) using default settings with 
a read length parameter of 150. The mapped reads of the 
OA and KL cohorts were then plotted into a violin plot 
using ggplot2 package [47] to access which databases 
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provide better taxonomic classification. The distribution 
of the mapped reads was determined using the Shapiro 
test from the rstatix package [48]. Then, the difference 
between the mapped reads of OA and KL was determined 
using the Wilcoxon rank-sum test from ggplot2 package 
[47]. The data generated from Bracken2 were exported in 
the form of BIOM (Biological Observation Matrix) table 
and analyzed using R programming language (version 
4.0.5, R Studio, Inc., Boston, MA, USA). The BIOM table 
was imported and filtered using the phyloseq package 
[49]. Only those taxa with a minimum prevalence of 20% 
across all the samples and a minimum coefficient of vari-
ation of 3.0 were included in the following analysis (Sup-
plementary Fig. S27). In general, ggplot2 [47] and ggpubr 
package [50] were used to create visualization plots.

In order to confirm our findings, we performed refer-
ence independent strategy by using Sourmash (version 
4.0.0) [51] to compute k-mer sketches. To discard errone-
ous k-mers, the low abundance of k-mers was trimmed 
using “trim-low-abun” from k-mer project, with a k-mer 
abundance cutoff of 3.0 and trimming coverage of 18. Sig-
natures were generated for each sample using “sourmash 
compute” with a compression ratio of 10,000 (−scaled 
10,000) and k-mer lengths of 21, 31, and 51 (−k21, −k31, 
−k51). A signature output was generated for Jaccard dis-
tance comparisons. Before the k-mer comparison, “sour-
mash index” was used to create a Sequence Bloom Tree 
database from a collection of signatures. Lastly, “sour-
mash compare” was used with default settings to com-
pare the signatures at each length of k.

The core microbiota was determined by including 
taxa present across all samples (i.e., prevalence of 100% 
across all the samples). Then, the core microbiota was 
visualized using bar chart to compare the heterogeneity 
between OA and KL cohorts as well as the heterogeneity 
across different villages. Alpha diversity, in terms of spe-
cies richness [52], Shannon [53], and Simpson index [54], 
was analyzed using the microbiomeSeq package [55]. 
Beta-diversity analysis was performed on both the Jac-
card and Bray-Curtis dissimilarity matrix calculated from 
the taxon abundance data standardized using Hellinger. 
Differences in beta diversity between groups (i.e., differ-
ent OA villages and different helminth infection status) 
or between different timepoints (pre vs post) were dis-
played with principal coordinates analysis (PCoA) plots 
and NMDS plots.

Metagenomes were annotated for functional genes and 
pathways using HUMAnN v3.0 and its UniRef 50, Pfam, 
and MetaCyc pathway databases using read sequences 
that were trimmed and quality filtered using KneadData 
[56]. Read counts were normalized for gene length (reads 
per kilobase), transformed by centered log ratio, and 
filtered to remove very low prevalent features before 

statistical analyses were carried out with MaAsLin2 v1.10 
using the same linear-mixed effects models as for the tax-
onomic comparisons [26].

Growth rate index (GRiD) (version 1.3) was used to 
evaluate the growth rate of microbial species in metagen-
omic samples [57]. Samples were mapped to a GRiD 
database (ftp://​ftp.​jax.​org/​ohlab/​GriD_​envir​on_​speci​fic_​
datab​ase/​stool_​micro​bes.​tar.​gz), a stool-specific data-
base created based on microbes mostly found in stool. 
GRiD score > 1.02 indicates bacteria are in growth phase, 
whereas GRiD score < 1.02 indicates that bacteria are in 
stationary or lag phase. The downstream analysis was 
conducted as described in Supplementary Fig. S28.

Statistical analysis
Multiple efforts were done for the differential abun-
dance analysis of the bacteria from OA and KL cohorts. 
Random forest (randomForest package) was used to 
identify microbiome taxa predictive of OA and KL [52] 
groups. We generated a “SMOTE” (Synthetic Minor-
ity Oversampling Technique) (consisting of 280 OA 
and 336 KL) dataset using the package DMwR [58] to 
address the imbalance number of samples between OA 
(n = 594) and KL (n = 56) samples [59]. SMOTE algo-
rithm is a technique to address the imbalanced data-
sets by oversampling the minority class. A new data 
of the minority class was created artificially using the 
nearest neighbors of these cases and hence leading to 
a more balanced dataset [60]. Then, the random forest 
model was built based on this “SMOTEd” data set and 
tuned with the methods described by Brwonlee (2016) 
[61], followed by the significant testing using the meth-
ods described by Douglas (2020) [62]. Another more 
detail analysis via MaAsLin2 (Microbiome Multivari-
able Association with Linear Models2) from MaAsLin2 
package of R was conducted to identify microbiome 
taxa predictive of OA and KL groups while controlled 
for village, age, and genders.

For alpha diversity, Wilcoxon rank-sum test [63] was 
performed to compare groups statistically in the cross-
sectional study (i.e., helminth-infected vs Uninfected 
and OA villages versus the KL), whereas Wilcoxon 
signed-rank test was used for paired samples in longi-
tudinal study (i.e., pre vs post for both responders and 
uninfected). We also conducted a linear mixed model to 
examine the impact of helminth on alpha diversity while 
controlling the village location [64].

As for beta diversity, the comparison on pairwise 
distance of the samples between OA villages and KL 
was conducted using Wilcoxon rank-sum test. This 
same analysis was also applied to the output gener-
ated from k-mers sketches. Permutational multivariate 
analysis of variance (PERMANOVA) under ADONIS 

ftp://ftp.jax.org/ohlab/GRiD_environ_specific_database/stool_microbes.tar.gz
ftp://ftp.jax.org/ohlab/GRiD_environ_specific_database/stool_microbes.tar.gz
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function [65] from the vegan package was conducted 
with 10,000 permutations on both the Jaccard and 
Bray-Curtis dissimilarity matrix. This analysis was first 
performed on specific variables of interest (i.e., differ-
ent geographical locations, helminth status, and pre vs 
post). ADONIS was used to assess the effect of multi-
ple variables on the gut microbial composition (e.g., if 
they had probiotic food, diarrhea, and antibiotics drug 
in the past 3 months, different age groups, subtribes, 
and protozoa infections), as well as analysis of similar-
ity (ANOSIM) [66]. To test for multivariate dispersions 
among groups, the permutation multivariate analysis 
of dispersion (PERMDISP) [65] was performed via the 
betadisper function and Tukey’s test under the vegan 
package [67].

The MDMR was used to specifically test for “statis-
tical interactions” between helminth status and vil-
lage location and to calculate the relative effect sizes 
on microbiome variation [27]. Differential abundance 
analysis was performed using MaAsLin2 [26] for both 
cross-sectional (i.e., helminth positive and negative 
individuals while including village as a covariate) and 
longitudinal data (i.e., between host and drug response 
while controlling for village as well as between 
responders and uninfected while controlling for treat-
ment and helminthic infections). Analysis of composi-
tion microbiomes with bias correction (ANCOM-BC) 
[68] was also conducted to validate the output gener-
ated from MaAsLin2, for cross-sectional data only.

For GRiD analysis, Spearman’s rank correlation test 
was conducted to examine the association between the 
bacterial species growth rate with Trichuris infection 
intensity for cross-sectional study. Then, the results 
were corrected using Benjamini-Hochberg with a false 
discovery rate (FDR) of 5% [69]. As for the longitudi-
nal study, comparison of bacterial species growth rate 
between pre and post treatment of both responders 
and uninfected was computed using Wilcoxon rank-
sum test and corrected using Benjamini-Hochberg 
with a FDR of 5%. A linear mixed model was built via 
the lmertest package [64] to determine the impact of 
the Trichuris intensity on the specific microbial growth 
rate by controlling for the village location for both the 
longitudinal and cross-sectional studies. Besides, mul-
tivariate association with linear models 2 (MaAsLin2) 
[26] was used to determine the microbial growth rate 
with differentially abundance in helminthic infections 
while controlling for village location and treatments.

Overall, the Wilcoxon rank-sum test and Wilcoxon 
signed-rank test from the rstatix package [48] were 
used to determine the p-value between groups for 
specific taxa in cross-sectional and longitudinal study 
respectively.

Key resources table
List of the bioinformatic tools and R packages used is 
displayed in the table below:

Tasks/analysis Name Source Identifier

Bioinformatic 
tools
Quality control, 
filtering, and 
trimming of raw 
sequence

KneadData No publication https://​github.​
com/​bioba​kery/​
knead​data

Trimmomatic Bolger et al., 
2014 [70]

https://​github.​
com/​bioba​kery/​
knead​data

Bowtie2 Langmead 
et al., 2012 [43]

https://​github.​
com/​bioba​kery/​
knead​data

FastQC Andrew, 2017 
[44]

https://​www.​
bioin​forma​tics.​
babra​ham.​ac.​uk/​
proje​cts/​fastqc/

Taxonomy 
assignment

Kraken2 Wood et al., 
2019 [45]

https://​github.​
com/​Derri​
ckWood/​krake​n2/​
wiki#​downl​oads

Estimate relative 
abundance 
of species or 
genera

Bracken2 Lu et al., 2017 
[46]

https://​github.​
com/​jenni​ferlu​
717/​Brack​en

Compute hash 
sketches from 
DNA sequence

Sourmash Brown et al., 
2016 [51]

https://​sourm​ash.​
readt​hedocs.​io/​
en/​latest/

Functional 
analysis

bioBakery 3 Beghini et al., 
2021 [56]

https://​github.​
com/​bioba​kery/​
bioba​kery/​wiki

Replication of 
bacterial species

GRiD Emiola et al., 
2018 [57]

https://​github.​
com/​ohlab/​GRiD

Pathoscope 2.0 Hong et al., 
2014 [71]

https://​github.​
com/​Patho​Scope/​
Patho​Scope

R packages
Data import, 
filtering, and 
processing

phyloseq McMurdie et al., 
2013 [49]

https://​joey7​11.​
github.​io/​phylo​
seq/​index.​html

Core microbiota 
analysis

DMwR Amunategui, 
2014 [58]

http://​amuna​
tegui.​github.​io/​
smote/

randomForest Breiman et al., 
2018 [72]

https://​cran.r-​
proje​ct.​org/​web/​
packa​ges/​rando​
mFore​st/​index.​
html

Alpha diversity phyloseq McMurdie et al., 
2013 [49]

https://​joey7​11.​
github.​io/​phylo​
seq/​index.​html

microbiomeSeq Ssekagiri et al., 
2017 [55]

https://​github.​
com/​umeri​jaz/​
micro​biome​Seq

rstatix Kassambara, 
2021 [48]

https://​cran.r-​
proje​ct.​org/​web/​
packa​ges/​rstat​ix/​
index.​html
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Tasks/analysis Name Source Identifier

Beta diversity phyloseq McMurdie et al., 
2013 [49]

https://​joey7​11.​
github.​io/​phylo​
seq/​index.​html

Differential 
abundance 
analysis

MaAsLin2 Malick et al., 
2021 [26]

https://​hutte​
nhower.​sph.​harva​
rd.​edu/​maasl​in/

ANCOMBC Lin et al., 2020 
[68]

http://​www.​bioco​
nduct​or.​org/​
packa​ges/​relea​se/​
bioc/​vigne​ttes/​
ANCOM​BC/​inst/​
doc/​ANCOM​BC.​
html

ADONIS and 
ANOSIM

vegan Oksanen et al., 
2020 [67]

https://​cran.r-​
proje​ct.​org/​web/​
packa​ges/​vegan/​
index.​html

Interaction 
between covari-
ates

MDMR McArtor, 2018 
[27].

https://​cran.r-​
proje​ct.​org/​web/​
packa​ges/​MDMR/​
index.​html

lmerTest Kuznetsova 
et al., 2020 [64]

https://​cran.r-​
proje​ct.​org/​web/​
packa​ges/​lmerT​
est/​index.​html

Correlation test psych Revelle, 2022 
[69]

https://​cran.r-​
proje​ct.​org/​web/​
packa​ges/​psych/​
index.​html

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40168-​022-​01385-x.

Additional file 1: Table S1. MaAsLin2 results of the bacterial taxa differen-
tially abundant between OA and KL subjects independent of village, age, 
and sex as covariates. Table S2. Relative impact of village, helminth infec-
tion and Trichuris infection on gut microbiome dissimilarity across samples 
(ADONIS, ANOSIM, and Betadisper; permutation = 999) in the cross-
sectional analysis. Table S3. MaAsLin2 results of the bacterial taxa that 
are independent and associated with the interaction between helminth 
and village. Table S4. Relative impact of deworming on gut microbiome 
dissimilarity of different group of Orang Asli samples based on their micro-
biome data in pre and post anthelmintic treatment (ADONIS, ANOSIM, 
and Betadisper; permutation = 999). Table S5. MaAsLin2 results of the 
bacterial taxa that are altered by treatment response, controlling for infec-
tion status and village as fixed effects. Table S6. MaAsLin2 results of the 
bacterial taxa that are associated with treatment response, associated with 
helminth status or not, correcting for village as a covariate. Table S7. Rela-
tive impact of the deworming on gut microbiome dissimilarity of different 
group of Orang Asli samples based on their gut microbiome data in pre, 
21-day, and 42-day post- anthelmintic treatment (ADONIS, ANOSIM, and 
Betadisper; permutation = 999). Table S8. Spearman correlation analysis 
on the growth rate (GRiD score) of the bacterial species with Trichuris 
burden among the pre-treatment samples. Table S9. Spearman correla-
tion analysis on the growth rate (GRiD score) of the bacterial species with 
Trichuris burden among the Responders. Table S10. MaAsLin2 results of 
the bacterial replication (based on GRiD score) that are associated with 
Trichuris infection while controlling for treatment group and villages.

Additional file 2: Figure S1. A geographic map showing the locations of 
each village and the Kuala Lumpur city in Peninsular Malaysia (stars and 
numbers) together with a table with other information including states, 
tribes and subtribes. Figure S2. A flow diagram of the total number of 

subjects (Orang Asli and urban citizens from Kuala Lumpur) involved in 
both the pre-anthelmintic and post-anthelmintic of this study. Figure S3. 
A flow diagram summarizing the bioinformatic analysis from raw reads, 1) 
Quality filtering, remove human reads and adapter (KneadData), 
taxonomic classification (Kraken2 and Bracken2), 3) K-mer based approach 
(Sourmash), 4) Estimation of bacterial growth rate (GRiD) to downstream 
analysis (A–C) such as beta diversity, alpha diversity, effect size estimation 
and differential abundance, and 5) Functional genes and pathways 
analysis using HUMAnN v3.0 and its UniRef 50, Pfam, and MetaCyc 
pathway databases. Figure S4. Difference in the composition of core 
microbiota between Orang Asli cohort and KL cohort in different 
taxonomic rank, which include: A Class, B Order, C Family, D Genus, and E 
Species. Figure S5. Difference in the composition of core microbiota 
between different geographical location in different taxonomic rank, 
which include A Family, B Genus, and C Species. Figure S6. A Bar plot of 
the top 20 species that best predict the difference of the core gut 
microbiota between Orang Asli (OA) cohort and Kuala Lumpur (KL) cohort 
using a Random Forest classification model B and C box plots displaying 
the selected core microbial species that have high variation between 
Orang Asli (OA) cohort and Kuala Lumpur (KL) cohort based on the 
Random Forest analysis. The relative abundances of core microbial species 
between Orang Asli cohort and KL cohort were tested using Wilcoxon 
rank sum test. B Species with significant higher abundance in Orang Asli 
cohort than KL cohort, which include (from left to right): HRGM Genome 
3145, Gemmiger sp900539695, and Blautia A sp00043661, respectively. C 
Species with significant higher abundance in KL cohort than the Orang 
Asli cohort, which include (from left to right): Megamonas funiformis, 
Phocaeicola plebeius A, and Bacteroides stercoris, respectively. Figure S7. 
Effects of geographical location on core gut microbiota and the 
percentage of unmapped reads in the microbiome. A The core gut 
microbial species showing the largest variation (cut-off 6.0 for the 
coefficient of variation) between Orang Asli and Kuala Lumpur cohort in 
Malaysia across 650 samples. Box plots illustrate the percentage of 
mapped reads in B RefSeq (i.e., Bacteria, protozoa, fungi, viral, archaea) 
database, and C Unified Human Gastrointestinal Genome (UHGG) 
database in different geographical locations. Pairwise comparison 
between each village and the KL cohort was tested using Wilcoxon rank 
sum test whereas the comparison for all groups was tested using 
Kruskal-Wallis. Figure S8. Beta diversity of 650 samples [Orang Asli (OA) 
and Kuala Lumpur (KL) cohort]. Comparison of pairwise beta diversity of 
all villages to KL cohort, assessed by Jaccard distance based on distance of 
A nucleotide k-mer sketches (k = 51), B k-mer sketches (k = 31), and C 
species level. Pairwise comparison between each village against the KL 
cohort was tested using Wilcoxon rank sum test. Principal Coordinates 
Analysis (PCoA) of Jaccard distance based on D genus, E k-mer sketches = 
21, F k-mer sketches = 31, and G k-mer sketches = 51 in OA and KL 
cohort. The individuals from different geographical locations were 
denoted by different colors. Figure S9. Epidemiology data of the Orang 
Asli (OA) and Kuala Lumpur (KL) cohort. A Distribution of the age group 
from OA and KL cohort, the OA and KL cohort were denoted by purple 
and pink color, respectively. B Distribution of the gender from OA and KL 
cohort, the female and male cohorts were denoted by blue and yellow 
color, respectively. C The prevalence of different types of helminthiases, 
which include Trichuris infection, Ascaris infection and hookworm 
infection, the heavy, moderate and light infection were detonated by 
different purple color intensity. Figure S10. Beta diversity comparing the 
gut microbiome between intestinal helminth-infected and uninfected 
Orang Asli cohorts at species level. The results were visualized using 
Non-metric multidimensional scaling (NMDS) plot of A Bray-Curtis 
(ADONIS: p = 0.001, R2 = 0.035; ANOSIM: p = 0.001, R = 0.149) and B 
Jaccard distance (ADONIS: p = 0.001, R2 = 0.024; ANOSIM: p = 0.001, R = 
0.948) and C Principal Coordinates Analysis (PCoA) of Jaccard distance 
(ADONIS: p = 0.001, R2 = 0.024; ANOSIM: p = 0.001, R = 0.948). The 
individuals infected and uninfected with intestinal helminths denoted by 
blue and red color, respectively. Figure S11. Box plots showing alpha 
diversity of gut microbiome profile at species level using A Shannon 
diversity and B Simpson diversity index on individuals infected and 
uninfected with intestinal helminths; C Shannon diversity and D Simpson 
diversity index on different numbers of intestinal helminth infection; E 
Shannon diversity and F Simpson diversity index on individuals infected 
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and uninfected with Trichuris sp. infection; and G Shannon diversity and H 
Simpson diversity index on different villages. The statistical difference 
between two groups was tested using the Wilcoxon rank sum test 
whereas more than two groups was tested using Kruskal-Wallis. Figure 
S12. Box plots showing alpha diversity (i.e., Richness, Shannon and 
Simpson diversity index) at species level of gut microbiome profile on 
Orang Asli who are infected and uninfected with intestinal helminths from 
A Rasau, B Legong, C Judah, D Sepat, and E Bangkong. The comparison of 
the alpha-diversity index between helminth-infected and noninfected 
samples is tested using the Wilcoxon rank sum test. Figure S13. Bubble 
plot shows bacterial species that are differentially abundant between 
Trichuris infected and uninfected groups in all samples, as well as specific 
villages based on the output of the A Multivariate Association with Linear 
Models (MaAsLin2) and B Analysis of Compositions of Microbiomes with 
Bias Correction (ANCOM-BC). The size of the bubble is negatively 
proportional to the p-value. The larger the bubble size displaying the 
lower p-value. Figure S14. Boxplot shows the differences in the 
abundance of A Lactobacillus gasseri and B Lactobacillus crispatus in 
helminthic infections (left) and different villages (right). The statistical 
difference between two groups was tested using the Wilcoxon rank sum 
test whereas more than two groups (Village) was tested using Kruskal-
Wallis. Figure S15. Bar chart shows the changes in the prevalence of 
different types of helminthic infections in (left), and the prevalence of the 
number of helminthic infections (right) among the pre-anthelmintic, 
21-day, and 42-day post-anthelmintic. Boxplot showing alpha diversity 
(i.e., Richness, Shannon and Simpson diversity index) of gut microbiome 
profile at species level on the B Responder, and C Uninfected. The 
comparison of the alpha-diversity index between helminth-infected and 
noninfected samples is tested using the Wilcoxon signed-rank test. Figure 
S16. Beta diversity comparing the gut microbiome at species level 
between pre-anthelmintic (blue) and post-anthelmintic (red) among the 
Responders, visualized using Non-metric multidimensional scaling (NMDS) 
plot of A Jaccard distance (ADONIS: p = 0.001, R2 = 0.014; ANOSIM: p = 
0.001, R = 0.072) and B Bray-Curtis (ADONIS: p = 0.001, R2 = 0.020; 
ANOSIM: p = 0.001, R = 0.072). Principal Coordinates Analysis (PCoA) 
coordinate plot showing the beta-dispersion of C Jaccard distance and D 
Bray-Curtis distance based on gut microbiota profile of the Responders, 
with pre-anthelmintic (red) and post-anthelmintic (black). E PCoA plot 
showing the beta diversity of Bray-Curtis distances based on gut 
microbiota profile of Responders. Figure S17. Beta diversity comparing 
the gut microbiome at species level between pre-anthelminthic (blue) 
and post-anthelmintic (red) among the Uninfected, visualized using 
Non-metric multidimensional scaling (NMDS) plot of A Jaccard distance 
(ADONIS: p = 0.005, R2 = 0.012; ANOSIM: p = 0.001, R = 0.069) and B 
Bray-Curtis (ADONIS: p = 0.003, R2 = 0.015; ANOSIM: p = 0.001, R = 0.069). 
Principal Coordinates Analysis (PCoA) coordinate plot showing the 
beta-dispersion of C Jaccard distance and D Bray-Curtis distance based on 
gut microbiota profile of the Uninfected, with pre-anthelmintic (red) and 
post-anthelmintic (black). E PCoA plot showing the beta diversity of 
Bray-Curtis distances based on gut microbiota profile of the Uninfected. 
Figure S18. A Bubble plots of the top 10 bacterial species that 
differentially abundant between pre-anthelmintic and post-anthelmintic 
in Responders as well as the Uninfected based on the output of the 
Microbiome Multivariable Association with Linear Models 2 (MaAsLin2). 
The size of the bubble is negatively proportional to the p-value. The larger 
the bubble size displaying the lower p-value and, Line plots showing 
changes to three of the top differentially abundant bacterial species 
between pre and post treatment samples from B Responders and C 
Uninfected individuals, with p-values determined by the Wilcoxon 
signed-rank test. Figure S19. A Heatmap shows the bacterial species that 
are associated with treatment response while including infection status 
and village locations as covariates from MaAsLin2 analysis. Blue for 
positive association and red for negative association. B Boxplots show the 
differences in the abundance of CAG245 sp900552135 between different 
village (top), Helminth infections status (middle) and different response 
group (Uninfected or Responders) (bottom). The statistical difference 
between two groups was tested using the Wilcoxon rank sum test 
(cross-sectional) or Wilcoxon signed-rank test (longitudinal) whereas more 

than two groups (Village) was tested using Kruskal-Wallis test. C Heatmap 
shows the bacterial species that are associated with drug response while 
correcting helminth status from MaAsLin2 analysis. Blue for positive 
association and red for negative association. Figure S20. A Alpha diversity 
at species level, which visualized using the line plot of the Richness, 
Shannon and Simpson diversity indices of the Orang Asli (OA) in 
pre-anthelmintic, 21-day and 42-day post-anthelmintic groups, for 
Responders (green) and Uninfected (red) individuals. Alpha-diversity index 
of three timepoints were compared using the Friedman test whereas two 
timepoints was compared using the Wilcoxon signed-rank test. There are 
no statistical differences between groups. B Principal coordinates Analysis 
(PCoA), C Non-metric multidimensional scaling (NMDS), and D Beta-
dispersion of Jaccard distance based on gut microbiota profile at species 
level of the pre-anthelmintic (purple), 21-day (green), and 42-day 
post-anthelmintic (gold) from the Responders (ADONIS: p = 0.001, R2 = 
0.017; ANOSIM: p = 0.001, R = 0.053) (left) and Uninfected (ADONIS: p = 
0.219, R2 = 0.011; ANOSIM: p = 0.001, R = 0.052) (right). Figure S21. 
Growth Rate Index (GRiD) analysis of the gut bacteria in the Orang Asli 
(OA) cohort. Correlation matrix of the top 20 gut microbial species that 
correlate with the infection intensity of Trichuris trichiura in A pre-treat-
ment samples and B among Responders. Figure S22. A Heatmap 
showing the replication the gut microbial species that are associated with 
intestinal helminth infection among the Responders. The first vertical side 
bar encodes the intestinal helminth infection while the second side bar 
indicates the infection intensity of the Trichuris. B Box plots showing the 
two bacteria (i.e., uncultured Oscilibacter sp. [left] and Phocaeicola vulgatus 
[right]) that are significantly negatively correlated with the infection 
intensity of the Trichuris in Responders. The statistical difference between 
two groups was tested using the Wilcoxon rank sum test. C GRiD score 
correlation between bacterial species with the infection intensity of 
Trichuris among the Responders. The bar chart shows the Spearman’s rank 
correlation coefficient. D Heatmap showing the replication of the gut 
microbial species that are associated with albendazole treatment among 
the uninfected. Samples are shown in row by different timepoints 
(pre-anthelmintic and post-anthelmintic) whereas the rank of the GRiD 
score of each bacterium is shown in column. Figure S23. Barplot shows 
all the pathways that most significantly different between Orang Asli and 
Urban citizen from Kuala Lumpur (by controlling age and gender) (top), 
Village (with helminth as covariates) (middle), and Albendazole response 
(which include helminth and village as covariates) (bottom) based on the 
output of the Microbiome Multivariable Association with Linear Models 2 
(MaAsLin2). The length of the bar corresponds to the value of the 
significant association (can be either positive or negative). Figure S2. 
Barplot shows all the gene families that most significantly different 
between Orang Asli and Urban cohort from Kuala Lumpur (by controlling 
age and gender), Village (with helminth as covariate) (middle), C 
Albendazole response (which include helminth and village as covariates) 
(bottom) based on the output of the Microbiome Multivariable 
Association with Linear Models 2 (MaAsLin2). The length of the bar 
corresponds to the value of the significant association (can be either 
positive or negatively associated). Figure S25. Box plot shows the 
abundance of the top pathways or gene families based on the output of 
the Microbiome Multivariable Association with Linear Models 2 
(MaAsLin2), which include abundance of A Superpathway of L−trypto-
phan biosynthesis between Orang Asli and Urban cohort from Kuala 
Lumpur, B Peptidoglycan biosynthesis II (staphylococci) between different 
villages, C L-glutamate degradation V between pre- and post-albendazole 
treatment groups, and D Phosphoenolpyruvate carboxylase between 
pre- and post-albendazole treatment groups. The statistical difference 
between two groups was tested using the Wilcoxon rank sum test 
(cross-sectional) or Wilcoxon signed-rank test (longitudinal) whereas more 
than two groups (Village) was tested using Kruskal-Wallis test. Figure S26. 
Summary of the methodology from field work, sample collection, shotgun 
metagenomic sequencing, and data analysis. Figure S27. Flow diagram of 
the filtering steps before downstream analysis (beta diversity, alpha 
diversity, and differential abundance). Figure S28. Methodology for the 
evaluation of microbial growth rate in relation to helminth infection status 
in both cross-sectional and longitudinal phase using GRiD analysis.
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