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ABSTRACT A select group of pathogens infects neurons in the brain. Prior dogma 
held that neurons were “defenseless” against infecting microbes, but many studies 
suggest that neurons can mount anti-microbial defenses. However, a knowledge gap in 
understanding how neurons respond in vitro and in vivo to different classes of microor­
ganisms remains. To address this gap, we compared a transcriptional data set derived 
from primary neuron cultures (PNCs) infected with the neurotropic intracellular parasite 
Toxoplasma gondii with a data set derived from neurons injected with T. gondii protein 
in vivo. These curated responses were then compared to the transcriptional responses of 
PNCs infected with the single-stranded RNA viruses, West Nile virus or Zika virus. These 
analyses highlighted a conserved response to infection associated with chemokines 
(Cxcl10, Ccl2) and cytokines (interferon signaling). However, T. gondii had diminished 
IFN-α signaling in vitro compared to the viral data sets and was uniquely associated with 
a decrease in neuron-specific genes (Snap25, Slc17a7, Prkcg). These data underscore that 
neurons participate in infection-induced neuroinflammation and illustrate that neurons 
possess both pathogen-specific and pathogen-conserved responses.

IMPORTANCE Though neurons are commonly the target of pathogens that infect the 
central nervous system (CNS), few data sets assess the neuronal response to infection. 
This paucity of data is likely because neurons are perceived to have diminished immune 
capabilities. However, to understand the role of neurons in neuroinflammation and their 
immune capabilities, their responses must be investigated. Here, we analyzed publicly 
accessible, neuron-specific data sets to compare neuron responses to a eukaryotic 
pathogen vs two Orthoflaviviruses. A better understanding of neuron responses to 
different infections will allow us to develop methods for inhibiting pathways that lead 
to neuron dysfunction, enhancing those that limit pathogen survival, and mitigating 
infection-induced damage to the CNS.

KEYWORDS Toxoplasma gondii, T. gondii, neurons, RNA-seq, transcriptomics, host 
response, central nervous system infections

A select number of microbes (e.g., measles virus and Toxoplasma gondii) infect the 
central nervous system (CNS). For many of these infections, neurons are the CNS cell 

that is primarily infected (1–3). Until relatively recently, dogma suggested this neuro­
nal predominance arose from neurons lacking cell-intrinsic immune responses. Over 
several decades, work focusing on viral-neuron interactions established that neurons 
have cell-intrinsic responses, though these responses can differ from other cell types 
and even between neuron subtypes (4–7). These studies raise the question of whether 
the cellular immunity of neurons varies by context and/or pathogen. The eukaryotic 
intracellular parasite Toxoplasma gondii is a non-viral microbe with a tropism for neurons 
(8) and a broad natural host range, including rodents and humans (9). During infection, 

June 2025  Volume 10  Issue 6 10.1128/msphere.00216-25 1

Editor Ira J. Blader, Virginia-Maryland College of 
Veterinary Medicine, Blacksburg, Virginia, USA

Address correspondence to Daniel P. Beiting, 
beiting@vet.upenn.edu, or Anita A. Koshy, 
akoshy@arizona.edu.

The authors declare no conflict of interest.

See the funding table on p. 10.

Received 28 March 2025
Accepted 30 April 2025
Published 30 May 2025

Copyright © 2025 Johnson et al. This is an open-
access article distributed under the terms of the 
Creative Commons Attribution 4.0 International 
license.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sp
he

re
 o

n 
15

 A
ug

us
t 2

02
5 

by
 2

60
7:

f4
70

:6
:3

00
1:

11
2a

:5
17

b:
c3

bd
:2

10
4.

https://crossmark.crossref.org/dialog/?doi=10.1128/msphere.00216-25&domain=pdf&date_stamp=2025-05-30
https://doi.org/10.1128/msphere.00216-25
https://creativecommons.org/licenses/by/4.0/


parasites invade the CNS where they can infect multiple cell types, but in neurons, 
a portion of parasites switch to a slow-growing stage that forms tissue cysts (1, 
10, 11). These tissue cysts cause a persistent, asymptomatic infection, potentially for 
the lifetime of the host (10–12). Recent studies suggest that the immune system can 
recognize infected neurons, contributing to local control of T. gondii in vivo (13–16). In 
vitro studies have shown that neurons can be activated by IFN-γ to limit parasite growth 
(17). Like most intracellular microbes, all of which depend upon the host cell for survival, 
T. gondii highly manipulates its host cell through the secretion of effector proteins. Most 
of the studies that define how these effector proteins manipulate cells were done in 
vitro in fibroblasts and immune cells such as macrophages (18, 19). While such studies 
have revealed fundamental aspects of T. gondii-host cell biology, they will have missed 
neuron-specific effects or effects only triggered during in vivo infection. The importance 
of understanding these nuances is highlighted by studies showing that outcomes of T. 
gondii-host cell interactions can vary by T. gondii strain and host cell (20–23).

We previously tried to address this gap by using laser capture microdissection (LCM) 
in combination with our T. gondii-Cre system (24). In this system, we use parasites that 
express a T. gondii::Cre recombinase fusion protein (ROP::Cre) to infect Cre reporter 
mice that express a green fluorescent protein (GFP) only after Cre-mediated recombina­
tion. Because the ROP::Cre protein is introduced into the host cell concomitantly with 
other early effectors (ROPs) and before full invasion, neurons injected with the ROPs 
will express GFP even if they cleared the parasite or were never invaded (i.e., aborted 
invasion) (25–27). We then used LCM and RNA-seq to isolate, pool, and transcription­
ally profile the somas of T. gondii-injected (GFP+) neurons (TINs). Though a small area 
centered on TINs’ somas was captured, these transcriptional data still contained immune 
cell transcripts (24), making it difficult to distinguish which differentially expressed genes 
(DEGs) or pathways were derived from neurons, immune cells, or both.

In this study, we sought to identify neuron-specific responses to T. gondii by 
comparing RNA-seq data sets from our in vivo data with a newly generated in vitro data 
set from T. gondii-infected primary neuron cultures (PNCs). This analysis revealed a set 
of conserved pathways driven by chemokines, such as Ccl2 and Cxcl10. The comparison 
to previously published transcriptomes of West Nile virus (WNV)-infected and Zika virus 
(ZKV)-infected PNCs (7) revealed pathways that were conserved between these data sets 
and others that were pathogen dependent. For example, T. gondii data sets revealed a 
decrease in neuron-specific genes (e.g., Snap25, Slc17a7, and Prkcg) that were unchanged 
in virally infected neurons. Conversely, the type I IFN (IFN-α) response pathway was 
upregulated by WNV and ZKV and, to some extent, by T. gondii in vivo but not by T. gondii 
in vitro. In summary, the ability to compare the in vitro and in vivo response of neurons 
to infection highlights that neurons have intrinsic, microbe-specific responses that are 
modulated in vivo.

RESULTS

Conserved neuron response genes and pathways in T. gondii infection 
models

Transcriptomic data from neurons in two T. gondii infection conditions—neurons in 
tissue sections isolated with laser capture microdissection (24) and cortical primary 
neuron cultures (Fig. 1)—were compared to find common neuron response pathways. 
Briefly, in a previous report, we combined transgenic parasites that secrete Cre recombi­
nase with a mouse strain that expresses a Cre-sensitive GFP reporter, which allowed us to 
isolate T. gondii-injected neurons (GFP+NeuN+) by LCM (27). The RNA from these neurons 
was isolated, sequenced, and compared with neurons from uninfected mice (Fig. 1A).

In a separate study, PNCs infected with T. gondii for 24 hours were used to assess how 
infection altered the neuronal transcriptome. Reads were filtered, normalized, and 
represented as counts per million, shown in Fig. S1A through C. As expected, principal 
component analysis of the LCM and PNC data sets revealed marked differences between 
infected and uninfected controls (Fig. S1D and E), with over 2,100 differentially expressed 
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genes compared to uninfected controls (false discovery rate [FDR] ≤ 0.1, log2 fold change 
[FC] ≥ 1) (Fig. 1B; Tables S1 and S2).

As noted above, the transcriptomes from TINs contained transcripts classically 
associated with immune cells (24). Such transcripts were not observed in PNCs 
(Fig. S2), except for Cd80 and Cd44, which are receptors that are expressed during 

FIG 1 T. gondii-infected neurons from in vitro (PNC) and in vivo (LCM) systems were captured and analyzed for differentially expressed genes. (A) Experimental 

schematic of neurons captured by laser capture microdissection and infected primary murine neuronal cultures. (B) Volcano plots of differentially expressed 

genes in both data sets. Horizontal bars indicate adjusted P values ≤0.1, and vertical bars indicate log2 fold change ≥1 for up- and downregulated genes.
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neuron development (28, 29). Thus, the pathways identified in the PNC data that 
are also identified in the LCM data likely represent neuron-specific responses to T. 
gondii. Functional enrichment analysis of both sample types revealed 975 upregulated 
pathways shared between infected PNCs and neurons captured in vivo (Fig. 2A). A 
comparison of the top 50 enriched pathways of each condition (LCM or PNCs) identified 
14 pathways in common (Table S3). These pathways were associated with responses 
to different microbial stimuli (e.g., LPS, COVID, and respiratory syncytial virus) and 
cytokine signaling. By analyzing the individual genes associated with these pathways, 
we identified a small group of genes that were consistently enriched in these 14 
pathways. These genes included CXC motif chemokine ligand 10 (Cxcl10, 12 of the 14 
pathways), chemokine (C-X-C motif ) ligand 1 (Cxcl1, 10 of the 14), and chemokine (C-C 
motif ) ligand 2 (Ccl2, 9 of the 14) (Fig. 2B). These pathways were functionally similar 
in that they primarily centered around chemokine/cytokine signaling and proinflamma-
tory responses (Fig. 2C). While both PNCs and the LCM data showed an enrichment of 
these pathways, the LCM data set showed a higher number of genes involved (set size) 
and increased log2FC of the DEGs (Fig. 2C). Only Ifih1, Plaur, and Tnfaip3 were highly 
represented genes that were equivalent or higher in PNCs vs LCM neurons.

A comparison of the downregulated pathways between LCM and PNCs found 28 
pathways in common (Fig. 2D). Many of these pathways were neuron-specific, including 
neuronal markers, protein-protein interactions at synapses (e.g., SNARE proteins), long-
term potentiation, activation of NMDA receptors, and GABA synthesis and receptor 
signaling. We had previously noticed fewer neuron markers in our LCM data set but could 
not determine if this decrease was due to an increase in contaminating immune cells 
comprising a higher proportion of our transcripts or a true decrease in neuronal 
transcription. However, in the PNCs—which lack immune cells—we still saw a decrease 
in these neuron-specific pathways and related genes (Table S4). In addition to synaptic 
and neuron marker pathways, multiple voltage-gated potassium channels were downre­
gulated (Fig. 2E). Using the genes from the GO pathway GOMF_POTAS­
SIUM_ION_LEAK_CHANNEL_ACTIVITY, we found that many were downregulated in both 
of our data sets (Fig. S3) except for Kcnk5/TASK-2, which was upregulated in both 
paradigms. In summary, the ability to compare the in vivo and in vitro data sets appears 
to be a feasible way to identify neuron-specific responses from complex in vivo transcrip­
tional studies and suggests that T. gondii may directly modulate neuronal function.

Comparison of neuronal responses to T. gondii or viral infection

To determine if these neuron responses were specific to T. gondii or occurred with other 
relevant infections, we wanted to compare the LCM and PNC data sets with transcrip­
tional studies from neurons infected with non-parasitic microbes. A search of the Gene 
Expression Omnibus (GEO) repository, the NIH’s publicly funded genomics data reposi­
tory, identified several transcriptional studies on infected wild-type murine neurons (7, 
30–32). From these studies, we analyzed four data sets: Zika virus- and West Nile virus-
infected PNCs profiled by microarray (7) and two single-cell RNA-seq studies of cortical 
neurons infected with a circuit tracing, attenuated rabies virus (31, 32). The latter two 
data sets (31, 32) had very few genes that met our criteria for DEGs (FDR ≤ 0.1, log2FC ≥ 
1) and were excluded from further analysis. However, the data sets for ZKV and WNV (7) 
contained 193 and 690 DEGs, respectively (Fig. 3A), making them amenable for compari­
son with the T. gondii data sets.

Between these data sets, there were 532 pathways in common (Fig. 3B). We further 
narrowed our focus to pathways relating to IFN-γ, IFN-α/β, and TNF signaling to see if 
there were differences in these responses between infections (Fig. 3C). We found that all 
data sets had an enrichment for the IFN-γ signaling pathway and innate immunity 
pathways (represented by Toll-like receptor cascades) (Fig. 3C), but only the viral data 
sets showed enrichment for TNF signaling. As expected, the viral data sets showed an 
enrichment in anti-viral, type I IFN pathways, specifically in IFN-stimulated genes. 
Consistent with prior work (33), T. gondii-infected PNCs showed very little type I IFN 
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response, while the LCM data set showed some enrichment in the “Antiviral Mechanism 
by IFN-Related Antiviral Mechanisms” pathway (Fig. 3C; Fig. S4). To understand these 
differences, we compared the individual genes involved in type I IFN pathways and 
found that several key IFN-α genes were differentially expressed (Fig. 3D and E). T. gondii 
PNCs showed upregulation in Stat1 and Irf7 but not in many downstream genes. These 
downstream genes fell into two clusters, with the first cluster (e.g., Oas2, Oas1l, and 
Epsti1) showing no baseline expression or upregulation and the second cluster (e.g., 
Ifnar2 and Stat2) showing low baseline expression and no upregulation (Fig. 3E). WNV, 
ZKV, and, to a lesser extent, in vivo infection with T. gondii showed the upregulation of 
many of the genes in this pathway, though differences could be seen even between 
these three experimental conditions (e.g., Ifna2, 4, 5, 12) (Fig. 3D). Collectively, these data 
suggest that in vitro, WNV and ZKV trigger neuron IFN-α responses, but T. gondii does 
not, while T. gondii triggers a broader immune response in vivo.

DISCUSSION

Here, we sought to define how neurons respond to T. gondii and determine how this 
response compares to infection with other neurotropic microbes. To accomplish this 
goal, we compared four transcriptional data sets: T. gondii-injected neurons captured by 

FIG 2 Pathway analysis reveals the neuronal response to T. gondii infection involves an increase in proinflammatory cytokines and a decrease in neuron function. 

(A) The top 14 enriched pathways between LCM data set and PNCs were selected out of 975 upregulated pathways. (B) Quantification of the most represented 

genes in the 14 most enriched pathways with a heatmap of their log2FC. (C) Representative signature pathways between PNCs and LCM with normalized 

enrichment scores (NES). (D) Venn diagram of 28 downregulated pathways in LCM and PNC data sets. (E) Enrichment scores of downregulated neuron pathways 

in T. gondii data sets. GSEA, gene set enrichment analysis.
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LCM from infected murine brain tissue and primary murine cortical neuron cultures 
infected with T. gondii, WNV, or ZKV. These comparisons revealed that cortical neurons 

FIG 3 WNV- and ZKV-infected PNCs and the LCM data set show the upregulation of IFN-α response genes, unlike T. gondii-infected PNCs. (A) Volcano plots of 

WNV and ZKV-infected PNCs. Horizontal bars indicate adjusted P values ≤ 0.1, and vertical bars indicate log2 fold change ≥ 1 for up- and downregulated genes. 

(B) Upset plot of upregulated gene set enrichment analysis pathways. (C) Relative expression of inflammatory pathways across data sets. (D) IFN-α response 

genes expressed in LCM, T. gondii, WNV, and ZKV infected in log2FC. (E) Count per million of IFN-α response genes in LCM and T. gondii PNC data sets with raw 

values shown. ND, not detected. ND genes in both LCM and PNCs in panel D are not included in panel E.
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have conserved responses to these infections but also show key differences that 
distinguish responses to a virus vs a eukaryotic parasite.

All four data sets had a pronounced increase in inflammatory pathways, including 
in type I and type II interferon signaling (Fig. 3C). Of the many cytokines/chemokines 
upregulated in these data sets, Cxcl10 is highly represented in the pathways upregulated 
in the LCM and T. gondii-infected PNC data sets and is also upregulated in WNV- and 
ZKV-infected PNCs (Fig. 4). These data suggest that Cxcl10 upregulation is a conserved 
feature of the neuron response to these infections. As Cxcl10 is a chemokine that attracts 
innate and adaptive immune cells, its conserved upregulation is consistent with the need 
to attract immune cells to infected neurons, whether the infecting microbe is viral or 
parasitic (e.g., effector T cells for T. gondii [34]). Validating the role of neuronal Cxcl10 and 
other key genes/pathways in the outcomes of CNS infection will be the focus of future 
work.

The differences between the data sets are also revealing. Only the T. gondii infection 
data sets showed a consistent downregulation of neuronal function pathways (markers, 
long term potentiation [LTP], synapse function, and potassium channels). The downregu­
lation in potassium channels was of particular interest to us because it could explain our 
recent finding that TINs have a depolarized resting membrane potential when compared 
to non-injected neighboring neurons or neurons in uninfected mice (35). Neuronal 
dysfunction associated with T. gondii infection has been identified previously (36–41), 
but the experimental setups made it a challenge to distinguish the direct effect of T. 
gondii on neurons vs effects from infiltrating immune cells or microglia and astrocytes. 
The findings presented here suggest that T. gondii can directly induce neuronal dysfunc­
tion.

Another interesting example of infection-dependent effects is IFN-α signaling. Akin to 
other type I IFN responses, IFN-α signaling begins with activation of a host cell pattern 
recognition receptor (PRR) by a pathogen. This activation leads to IRF7 phosphorylation, 
resulting in the upregulation of IFN-α. Once released, IFN-α binds to the interferon-α/β 
receptor (IFNAR), which allows IFN-α to act in an autocrine and paracrine fashion. IFNAR 
activation leads to the phosphorylation of STAT1 and STAT2, mediating the transcrip­
tional upregulation of a specific set of downstream IFN-α response genes (42) (Fig. 5). As 
expected, the virus-infected PNCs showed upregulation in genes throughout this 
pathway, but the two T. gondii data sets were less consistent. Both T. gondii data sets 
showed an upregulation in IRF-7 but no upregulation of type I IFNs (α or β) (Fig. S4C). 
These findings are consistent with prior work in human fibroblasts that suggest that T. 
gondii-infected cells block type I IFN responses (33) upstream of the T. gondii effector 
TgIST, which prevents IFN signaling by binding to pSTAT1/2 heterodimers and pSTAT1 
homodimers (43, 44) (Fig. 5). That the in vivo T. gondii data set shows the upregulation of 
some of the downstream IFN response genes suggests that autocrine and paracrine 
signaling from neuronal and non-neuronal cells may overcome this inhibition in vivo, or 
these downstream genes are upregulated by other pathways. Collectively, these findings 
are consistent with a model in which neuronal responses to infection depend on the 
context, with conserved responses arising from pathogen sensors that converge on the 
same downstream pathways. Such sensors could detect microbes directly or through 
neuronal stress that, in turn, triggers cellular responses associated with pathogen 
recognition (45).

MATERIALS AND METHODS

Parasite maintenance

As previously described, type II T. gondii (Pruginaud) used in this study was maintained 
through serial passage in human foreskin fibroblasts (gift of John Boothroyd, Stanford 

Research Article mSphere

June 2025  Volume 10  Issue 6 10.1128/msphere.00216-25 7

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sp
he

re
 o

n 
15

 A
ug

us
t 2

02
5 

by
 2

60
7:

f4
70

:6
:3

00
1:

11
2a

:5
17

b:
c3

bd
:2

10
4.

https://doi.org/10.1128/msphere.00216-25


University, Stanford, CA) using Dulbecco’s modified Eagle medium (DMEM), supplemen­
ted with 10% fetal bovine serum (FBS), 2 mM glutagro, and 100 IU/mL penicillin and 
100 µg/mL streptomycin (27).

Mice

All mice were bred and housed in specific-pathogen-free University of Arizona Animal 
Care facilities. Cre reporter mice (ZsG mice) (mouse stock no. #007906) were originally 
purchased from Jackson Laboratories.

Primary murine neuron culturing

Mouse primary cortical neurons were harvested from E174 mouse embryos obtained 
from pregnant ZsG mice. Dissections of E174 cortical neurons were performed, and 
primary neuronal cell cultures were generated by methods described previously with 
minor modifications (46). The culturing plates were prepared by coating overnight with 
0.001% poly-L-lysine solution (Millipore Sigma, P4707, diluted in water 1:10) for plastic 
surfaces and 100 µg/mL poly-L-lysine hydrobromide (Sigma, P6282, dissolved in borate 
buffer, pH 8.4) for glass surfaces. They were washed three times for 10 minutes each with 
water and transferred to plating media (modified Eagle medium [MEM], 0.6% D-glucose, 
10% FBS). Neurons were seeded at 500,000 in 6-well plates for RNA-seq. Four hours 
after plating, a full media exchange to neurobasal media (Neurobasal base media, 2% 
B27 supplement, 1% L-glutamine, and 1% penicillin-streptomycin) was performed. On 
day in vitro (DIV) 4, neurons received a half volume media change of neurobasal media 
with 5 µM cytosine arabinoside (AraC; Millipore Sigma, C6645) to stop glial proliferation. 
One-third media exchange with neurobasal media occurred every 3–4 days thereafter. All 
the experiments were performed on 10 DIV neurons.

FIG 4 Cxcl10 is upregulated across acute and subacute data sets. Other conserved genes include Irf7, 

Icam1, Gbp3, Usp18, Stat1, and Ifih1.
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RNA isolation, preparation of cDNA libraries, and sequencing

Primary neuronal cell cultures were infected (MOI 5) for 24 hours prior to RNA isolation. 
Total RNA was extracted using the Direct-zol RNA Miniprep Kit and protocol (Zymo 
Research, R2051). Samples were sent to Novogene for quality control, library preparation,
and sequencing. RNA quality was measured on an Agilent 2100. Only samples with an 
RNA integrity score of >7 were used. After the QC procedures, mRNA from eukaryotic 
organisms is enriched using oligo(dT) beads. For prokaryotic or eukaryotic organisms’ 
long non-coding libraries, rRNA is removed using the Ribo-Zero Kit. First, the mRNA is 
fragmented randomly by adding fragmentation buffer; then, the cDNA is synthesized by 
using mRNA template and random hexamers primer, after which a custom second-strand 
synthesis buffer (Illumina), dNTPs, RNase H, and DNA polymerase I are added to initiate 
the second-strand synthesis. Second, after a series of terminal repair, a ligation, and 
sequencing adaptor ligation, the double-stranded cDNA library is completed through 
size selection and PCR enrichment. Paired-end sequencing was performed on an Illumina 
NovaSeq 6000 at 20 million reads per sample. Initial QC and adapter trimming were
performed by Novogene.

RNA-seq analysis and data visualization

Analyses and visualizations were conducted as previously described (47) using a 
combination of statistical computing environment R version 3, RStudio version 1.2.5042, 
Bioconductor version 3.1 (48), and Prism 9.4.1 per a previously published training tool 
(49). Transcript-level counts were summarized to genes using the TxImport package 
(50) and mouse gene annotation package from biomaRt (51). Data were filtered 
and normalized with the EdgeR package (52) by the trimmed mean of M-values 
method. Genes with less than one count per million in n of the samples (three for 
PNCs and five for LCM) were filtered out. The VOOM function in Limma (53) was 
used to variance stabilize the filtered, normalized data. Differential gene expression 
analysis was performed with Benjamini-Hochberg correction with Limma (53). Gene 
set enrichment analysis (GSEA) was done using the GSEA software (Broad Institute, 
version 4.0.2) (54) in R with the GSEABase package. Venn diagrams were generated 

FIG 5 Despite Irf7 upregulation in all data sets, T. gondii-infected neurons fail to upregulate and secrete IFN-α. (A) WNV and T. gondii activate PRR receptors 

leading to an intracellular cascade that results in IFN-α production through IRF7 phosphorylation. IFN-α binds IFNAR and upregulates Stat1 and other subsequent 

IFN-α response genes in WNV-infected neurons. T. gondii inhibits Stat1 in this pathway in vitro with the T. gondii effector protein TgIST. The lack of Ifn-α 

upregulation in both T. gondii data sets indicates that the parasite may inhibit the action of phosphorylated IRF7 through an unknown mechanism, either 

before full invasion or after. (B) In vivo, Stat1 may be upregulated through alternative stimulation pathways, such as IFN-γ. ISRE = interferon-stimulated response 

element, GAS = gamma interferon activation site.
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with the Venn Diagram tool from VIB/UGent Bioinformatics & Evolutionary Genomics at 
http://bioinformatics.psb.ugent.be/webtools/Venn/. Heatmaps were generated in R with 
pheatmap. Microarray data from BioProject PRJNA503843 (7), GSE122121, WNV samples 
GSM3455732, GSM3455733, and GSM3455734, ZKV samples GSM3455735, GSM3455736, 
and GSM3455737, and saline samples GSM3455737, GSM3455730, and GSM3455731 
were retrieved from the GEO with the GEOquery package. The rabies data set was 
retrieved in the same manner, GSE38975, samples GSM953148, GSM953149, GSM953150, 
and GSM953151. Microarray data were analyzed with code from NCBI’s GEO2R with the 
Limma (53) and umap (55) packages.
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