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Summary: As biomedical research becomes increasingly data-intensive,
it is increasingly essential to integrate genomic-scale datasets, so as to
generate a more holistic picture of complex biological processes. The sys-
tems biology paradigm may differ in strategy from traditional reduction-
ist scientific methods, but the goal remains the same: to generate tenable
hypotheses driving the experimental elucidation of biological mecha-
nisms. Intracellular pathogens provide an excellent opportunity for sys-
tems analysis, as many of these organisms are amenable to genetic
manipulation, allowing their biology to be played off against that of the
host. Moreover, many of the most fundamental biological properties of
these microbes (host cell invasion, immune evasion, intracellular replica-
tion, long-term persistence) are directly linked to pathogenesis and read-
ily quantifiable using genomic-scale technologies. In this review, we
summarize and discuss some of the available and foreseeable functional
genomics datasets pertaining to host–pathogen interactions and suggest
that the host–pathogen interface represents a promising, tractable chal-
lenge for systems biological analysis. Success will require developing and
leveraging new technologies, expanding data acquisition, and increasing
public access to comprehensive datasets, to assemble quantitative and
testable models of the host–pathogen relationship.
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Pathogens as biological ‘systems’: open, robust, modular,

and stochastic

Systems biology has enjoyed a recent surge in attention, but the

discipline is rooted in general systems theory, exemplified by

the work of Ludwig von Bertalanffy, who noted that biological

systems are open, i.e., they exchange information with the sur-

rounding environment (1). Intracellular pathogens can be

viewed as the ultimate open system: they are constantly inter-

acting with the infected cell and modulating both their own

state, as well as that of the host, so as to establish a viable physi-

cal ⁄ temporal niche. These organisms typically exhibit specific

auxotrophies, relying on host metabolic processes for essential

nucleotides, amino acids, lipids, sugars, vitamins, etc. In addi-

tion to taking in host nutrients for their own use, bacterial, fun-

gal, and protozoan pathogens deploy an arsenal of secreted

proteins (the ‘secretome’), including many factors that interact

with host cell components. This openness means that biological



systems cannot simply be described as the sum of their parts (a

characteristic termed ‘emergence’ by Bertalanffy).

The survival of both pathogens and their host cells depends

on the ability to buffer extreme environmental perturbation,

permitting comparable biological outcomes to emerge even in

the face of differing genetic backgrounds and environmental

conditions (the phenomenon of convergence, which Berta-

lanffy called ‘equifinality’). Yet, pathogens and host cells must

also remain sensitive to bone fide cues warranting a change in

behavior. This robust quality of biological systems is achieved

through a combination of functional redundancy and

feedback regulation (both positive and negative). Bacterial

chemotaxis provides a classic example of robust behavior,

responding to relative rather than absolute levels of soluble

signal, using methylation-mediated chemokine receptor

desensitization to maintain constant steady-state movement

over many orders of magnitude in stimulus concentration (2,

3). Disrupting the robustness of regulatory responses can have

a dramatic impact on cell signaling (4, 5), gene transcription

(6, 7) and organismal phenotype (8, 9), and may constitute

an important mechanism for tipping the scales in favor of the

pathogen versus the host.

Cellular processes are rarely dictated by single genes acting

in isolation. More commonly, they are governed by functional

modules defined by the association of coordinately expressed

genes (and protein–protein, protein–DNA complexes, etc.). In

an elegant experimental demonstration of modularity, Geut

et al. (10) combined three bacterial transcriptional regulators

with five promoters (each responsive to one of the three regu-

lators) in various permutations and combinations, generating

a library of >100 promoter-gene combinations. The resulting

networks of elements previously thought to be well under-

stood exhibit a striking diversity of signal output. Similar com-

plexity is evident in other examples of host–pathogen

interactions such as cell invasion and tissue specificity, where

specific interactions of encapsidated viruses with specific host

receptors (11) are replaced by a diversity of interacting recep-

tors and ligands for bacterial and eukaryotic pathogens (12,

13). The networks of genes and functional interactions under-

lying basic biological properties of pathogens (i.e. interactions

with infected cells) are not well understood, in part because of

their complexity, and in part because we lack the statisti-

cal ⁄ computational and biochemical ⁄ biophysical ⁄ genetic ⁄ cell
biological tools required to assess the relative contributions of

multiple, redundant, low-specificity pathways, involving con-

tributions from both the host and the pathogen.

Despite their robust nature, biological pathways often

exhibit a considerable degree of cell-to-cell variation or

stochasticity. The processes that govern cell behavior, such as

transcription and translation, are inherently noisy, due to the

low copy number of molecules involved (transcription fac-

tors, coactivators, etc.), the unpredictability of when compo-

nents will come together to perform a function (14),

unequal partitioning of components during cell division

(15), and other factors. The end result of this noise is that a

single cell can give rise to a population exhibiting heteroge-

neous properties (16), as has been known for decades from

studies on the development of spontaneous resistance to

bacteriophage infection in Escherichia coli (17). Recent observa-

tions at single cell and single molecule resolution have shown

that stochasticity can have a profound impact on organismal

biology, including microbial persistence and pathogenicity in

the face of selective pressure from drug treatment or host

immune responses. Using microfluidic channels to track bac-

terial replication at single cell resolution during antibiotic

treatment demonstrates that those bacteria that happen to be

growing most slowly in a population prior to drug treatment

(the tail of the curve) are also those that persist after drug

treatment (18). Further studies have used an inducible fluo-

rescent reporter to track the fate of individual Salmonella for up

to 10 generations during in vitro or in vivo infection (19, 20),

revealing that a sub-population of bacteria rapidly enter a

non-dividing dormant state and remain viable. The develop-

ment of chronic infections resistant to innate and adaptive

immune defenses is a defining feature of Mycobacterium tubercu-

losis, Chlamydia trachomatis, Toxoplasma gondii, Plasmodium vivax, Try-

panosoma cruzi, and numerous other pathogens; stochasticity

may play an important role in determining which pathogens

are cleared, and which persist over the long-term.

Expression profiling of intracellular pathogens

Systems approaches require a wealth of data, integrating infor-

mation on genetic diversity, gene regulation, transcript abun-

dance, protein synthesis and turnover, metabolite levels, etc.

Recent years have seen a surge in the availability of such data-

sets, generated on various platforms, and this flood in infor-

mation will undoubtedly grow, with the advent of new

sequencing technologies (21), improvements in quantitative

label-free proteomics (22, 23), and the rise of metabolomic

analysis (24) and other approaches. Complete genome

sequence and gene expression profiling data – often from

multiple isolates – are available for all of the pathogens dis-

cussed in this issue, in many cases including both axenic

(free-living) organisms and isolates obtained during the

course of in vitro and ⁄ or in vivo infection.
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To assess the extent to which these tools have been

exploited by the research community, we selected ten intra-

cellular pathogen species, including both bacteria and proto-

zoa, and extracted from the Gene Expression Omnibus (GEO)

(http://ncbi.nlm.nih.gov/geo) (25) and ArrayExpress

(http://www.ebi.ac.uk/arrayexpress) (26) databases all

microarray datasets publically deposited for each species. The

size of bubbles shown in Fig. 1A indicates the number of data-

sets available for each pathogen at the time of submission of

this manuscript, plotted as a function of genome size, and the

scale of the research community (estimated from the number

of Google Scholar hits). As one might expect, the largest

research communities (Salmonella, Mycobacterium, Plasmodium)

have typically produced the most extensive array datasets (90,

92, and 45, respectively), but expression profiling is clearly

underutilized as tool to dissect gene function in some species

(Chlamydia, Leishmania, Trypanosoma) relative to others (Listeria,

Toxoplasma). The number of expression profiling datasets for

even the most intensively studied pathogens pales, however,

by comparison with single-celled model organisms, such as

Saccharomyces cerevisiae, for which >1500 microarray datasets are

available – far more than for all pathogen species combined.

While the absolute number of available expression profiling

datasets may be of some interest, the nature of the experi-

ments from which they were generated is a more useful indi-

cator of pathogen research. We therefore classified these

database entries as focused on treatments (e.g. exposure to

drugs, or incubation under differing conditions), genetic

manipulation (e.g. comparison of wildtype with mutants or

knockouts), stage (e.g. cell-cycle progression, pathogen

differentiation), strain ⁄ species (e.g. field isolates versus cul-

ture-adapted strains), or host response (transcript profiling of

the host rather than the pathogen), as indicated in Fig. 1B

(Table S1 Supporting information). Several interesting themes

emerge from this analysis. For example, significantly more

genetic manipulation studies have been carried out in bacterial

than protozoan pathogen systems (red bars in Fig. 1B), high-

lighting an area in need of further emphasis, particularly in

light of technological breakthroughs improving the efficiency

of mutagenesis, targeted gene disruption and regulatable gene

expression in eukaryotic pathogens (27–33).

Another interesting theme to emerge from the classification

of expression profiling datasets is the focus of certain research

communities on metabolic pathways, using specific drug and

chemical treatments (pink bars in Fig. 1B). This emphasis

undoubtedly reflects high interest in drug discovery (particu-

larly for tuberculosis and malaria), but it is important to con-

sider that such studies also help elucidate metabolic pathways

and regulatory gene networks. The most extensive expression

profiling study reported for any intracellular pathogen

includes 430 microarray experiments examining the effects of

75 different drugs and compounds on gene expression in

M. tuberculosis (34). This work reveals a dynamic bacterial

transcriptome, allowing the identification of pathogen gene

modules involved in bacterial transcription, translation, DNA

repair, nucleotide biosynthesis, cell wall biosynthesis, and

respiration. Similarly, an extensive transcriptional map of

drug-specific responses in Plasmodium (35) includes approxi-

mately150 microarray experiments, spanning 20 different

compound treatments over multiple time-points. This work
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Fig. 1. Genomes and gene expression datasets for intracellular pathogens. (A) Bacterial (blue) and protozoan (red) pathogens plotted to indicate
genome size and the size of the research community, estimated based on citations in Google Scholar. Bubble size indicates the number of gene expres-
sion datasets (pathogen and host) accessible through NCBI GEO and ⁄ or ArrayExpress. (B) Gene expression datasets for three bacterial pathogens and
four protozoan parasites, classified according to the kind of experiments they represent. See Table S1 for details and text for further discussion.
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integrated analysis of co-expression with orthology predic-

tions and protein–protein interaction data (36), constructing

a network from which gene function could be inferred,

providing putative functional assignments for >90% of

‘hypothetical’ Plasmodium genes. Additional studies focused on

a subset of these genes, predicted to be associated with eryth-

rocyte invasion by P. falciparum merozoite, and confirmed colo-

calization with the apical invasion machinery for 31 of 42

candidates tested. These studies highlight the value of integrat-

ing expression profiling with other ‘Omic’ scale datasets in

elucidating biological pathways (37, 38).

Many cells exist in different forms, as they progress through

their replicative cycle, or differentiate through the various

stages that characterize certain pathogen life cycles. Plasmodium

offers an unusual take on cell-cycle progression, a phenome-

non that has been extensively studied in yeast and many other

organisms: hourly expression profiling through the 48 h

P. falciparum erythrocytic cycle shows that approximately 75%

of transcripts exhibit cell-cycle regulation (39, 40), in contrast

with approximately 6% for S. cerevisiae (41). A recent study

describes similar (albeit less dramatic) cell cycle-dependent

transcription in Toxoplasma (42). These results suggest that the

transcriptome of apicomplexan parasites may be less prone to

perturbation (43) than bacteria (34), but offer an opportunity

to exploit co-expression patterns to define probable gene

function, as noted above.

Stage-specific expression is commonly associated with path-

ogen transmission (e.g. the insect, mammalian liver, and

blood stages of Plasmodium) and ⁄ or disease pathogenesis, such

as the latent forms of M. tuberculosis infecting alveolar macro-

phages (associated with granuloma formation, destruction of

the lung parenchyma, and potential reactivation later in life),

or the ‘bradyzoite’ tissue cyst forms of T. gondii (causing

encephalitis in immunosuppressed patients, and recrudescent

chorioretinitis following congenital infection). In an effort to

dissect pathogen pathways responsible for M. tuberculosis persis-

tence, Voskuil et al. (44) used microarrays to evaluate changes

in gene expression following exposure to nitric oxide, a

potent effector produced by activated macrophages. Low con-

centrations of nitric oxide specifically induced the expression

of 48 genes, which further investigation revealed as a dor-

mancy regulon mobilized in response to stress, driving the

transition to latent infection. Similarly, several investigators

have explored transcript abundance levels during the differen-

tiation of acutely lytic T. gondii tachyzoites into the latent

bradyzoite cyst form (http://toxodb.org/toxo/showQuestion.

do?questionFullName = InternalQuestions.GenesByMicroarray-

Evidence).

These studies clearly demonstrate the power of genomic

approaches to elucidate genetic programs in pathogen biol-

ogy. Further expression profiling (whether by microarray or

high-throughput sequencing) may be expected to greatly

enhance our understanding of gene function within the con-

text of the genome as a whole, enabling any researcher work-

ing on gene X to ask: ‘What other genes are co-regulated with

my favorite gene?’ or ‘In what mutant lines, treatments, or

developmental programs is the expression of my favorite gene

altered?’

Expression profiling of host responses to infection

The first experiments using microarray technology to profile

host response to infection were carried out more than a dec-

ade ago (45). Many subsequent studies have examined host

cell transcriptional responses to a variety of intracellular

pathogens, but fundamental differences in the host cells ⁄
species and the biology of these pathogens (in vitro growth

properties, developmental stages, etc.) make it difficult to

define common versus unique components of host response

to infection. Jenner & Young (46) used meta-analysis to inte-

grate and analyze publically accessible datasets from 32 pub-

lished studies, representing nearly 800 experiments and >70

host–pathogen interactions. This strategy normalizes transcript

abundance across experiments to identify genes sharing com-

mon expression patterns. A core set of 511 common host

response genes, highly enriched for genes known to be

involved in inflammation, were identified as induced in all

cell types examined, regardless of the pathogen or host spe-

cies. While this report focused on viral and bacterial patho-

gens (only one parasitic protist was included), Zhang et al.

(47) recently conducted a large microarray study on host

response to Leishmania and Trypanosoma, using meta-analysis to

compare their own data with other publicly available host

response data sets for these pathogens. L. mexicana and T. cruzi

induce signature host responses differing from each other,

and also from the bacterial ⁄ viral signature identified previ-

ously. As in the study by Jenner & Young, this report noted

that certain pathogen-specific host response signatures were

conserved in all of the experiments analyzed, suggesting that

certain datasets may be clustered for large-scale data analysis,

regardless of the host cell type or pathogen strain ⁄ isolate used.

This observation bodes well for database mining, providing a

powerful way to dissect host cell responses to a broad range

of pathogens, as discussed further below.

Host and pathogen gene expression studies are typically

carried out as separate experiments, often in different
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laboratories, and usually employing distinct microarray plat-

forms specifically designed for each species. Unfortunately,

microarray technologies are dependent on the quality of avail-

able genome sequence and annotation, and mandate species–

specific platforms. As a consequence, relationships between

the host and pathogen are usually lost, although a few recent

studies have used multifunctional microarrays to probe simul-

taneously gene expression in P. berghei and its insect vector

(48) or mammalian host (49). The development of new tech-

nologies based on deep sequencing (RNA-seq) (50) is there-

fore very exciting, offering the prospect for simultaneous

profiling of pathogens and their hosts, reducing concerns

about gene model accuracy and platform-dependent effects.

We have recently embarked upon a study cataloging both cod-

ing mRNA and small non-coding RNA populations (in parallel

with quantitative proteomics from the same samples) from

human cells infected with various Toxoplasma strains. By gener-

ating host and parasite datasets in parallel, we hope to main-

tain critical relationships between host and parasite regulatory

RNAs, transcripts, and proteins, providing unprecedented

insight into the host–pathogen relationship. Given the grow-

ing recognition of roles played by non-coding RNAs in regu-

lating gene expression (51, 52), it is intriguing to consider

that bacterial or eukaryotic pathogen non-coding RNAs may

regulate host genes, as recently demonstrated for viral patho-

gens (53). Simultaneous analysis of RNAs in both host and

pathogen should also permit unbiased identification of

co-regulated RNAs that may interact, either physically or func-

tionally.

Integrative approaches to elucidate host–pathogen

interactions

As noted above, integrating bioinformatic analysis of geno-

mic-scale datasets with molecular genetic tools provides many

exciting research opportunities for addressing complex ques-

tions related to host–pathogen interactions. In theory, at least,

computational approaches can be used to identify pathogen

factors likely to be involved in salvaging nutrients from the

host or disrupting host cell function, host factors likely to be

involved in recognizing and controlling pathogen activity,

and host and pathogen factors likely to interact with each

other. For example, such integrative studies have been used to

identify mechanisms by which T. gondii tachyzoites regulate

host cell signaling. Previous work had shown that infection

results in phosphorylation of the host transcription factor

complex signal transducer and activator of transcription 3

(STAT3) ⁄ STAT6 and subsequent suppression of interleukin-

12 (IL-12) production by macrophages, a phenotype

observed only in cells infected with avirulent strains of the

parasite (54, 55). Saeij et al. (56) isolated progeny from a

genetic cross between virulent and avirulent parents, and used

expression profiling data as quantitative traits for QTL map-

ping to define the genetic locus responsible for the regulation

of host signaling. Using standard molecular genetics

approaches to swap alleles between strains, they formally

demonstrated that the highly polymorphic secreted kinase

ROP16 is a key regulator of host STAT3 ⁄ STAT6 signaling.

Other studies have used genetic mapping to highlight the

importance of another rhoptry kinase (ROP18) in T. gondii

virulence (57, 58).

Given the importance of these secreted rhoptry kinases

(59), the likelihood that host phosphorylation cascades will

prove to be critical in regulating infection, and the wealth of

kinases encoded in the parasite genome, Peixoto et al. (60)

exploited phylogenomic approaches to define the apicom-

plexan kinome, focusing on those predicted to be secreted

outside of the parasite. Seventeen kinases harboring a com-

plete catalytic triad were used to generate a hidden Markov

model specific for the rhoptry kinase (ROPK) family, which

was applied to the Toxoplasma genome to identify a total of 44

genes, including many ‘pseudokinases’ predicted to be inac-

tive. Integrative genomic analysis, combining differential

expression data for various parasite strains and life cycle stages

with evidence of evolutionary selection, highlights a limited

number of genes as likely candidates for regulating host

responses, including ROP16, ROP18, and the previously

uncharacterized gene ROP38. Expression profiling shows that

ROP38 is highly expressed in avirulent strains (e.g. VEG), but

virtually absent in virulent strains (e.g. RH). This gene arose

recently, via triplication subsequent to the divergence of Toxo-

plasma from the closely related cattle pathogen Neospora caninum.

To assess the function of ROP38, RH strain parasites were

engineered to express a ROP38 transgene to levels normally

observed in avirulent strains, and the effect of this mutation

was examined by expression profiling of both parasites and

infected host cells. Parasites expressing the ROP38 transgene

suppress the expression of over 1000 host response genes,

including key transcription factors associated with mitogen-

activated protein kinase (MAPK) signaling.

If we are interested in exploring host–pathogen interac-

tions, it will not be sufficient to identify virulence factors

alone; we must also define interacting partner(s). Protein–

protein interactions between host and pathogen have typically

been defined by affinity chromatography or precipitation, or

using genetic screens such as the yeast two-hybrid assay (61).

Alternatively, it is increasingly attractive to exploit informatics
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approaches to identify candidate interacting partners. Davis

et al. (62) identified host–pathogen protein pairs exhibiting

similarity to protein pairs previously found to interact, and fil-

tered this list based on structural properties of the interacting

pair, subcellular localization in both host and pathogen, and

expression levels during infection. In other words, they asked

for host and parasite proteins present in the right place, at the

right time, and with the right ‘look’ to interact. In another

study, Dyer et al. (63) extracted all known virus–host protein

interactions from various databases and constructed an inter-

action networks, revealing that pathogens typically target host

factors interacting with many other proteins (hubs), or con-

necting many different pathways (bottlenecks). As host–path-

ogen interactions are prominent at the time of host cell

invasion, Chen et al. (64) compiled a list of all proteins known

to be associated with the micronemes of apicomplexan para-

sites, which are thought to be released in association with

attachment and invasion (65). Domain signatures associated

with these microneme proteins identified new microneme

candidates in the genomes of 12 apicomplexan parasites, sev-

eral of which were validated by subcellular localization.

Domain–domain and protein–protein interactions known

from other systems were also used to computationally predict

host factors that might interact with microneme proteins

during invasion, providing a wealth of candidates that awaits

experimental validation.

Functional genomic screens using intracellular pathogens

Pathogen-based screens

Like the expression profiling studies reviewed above, genetic

screening offers another powerful approach for interrogating

the genomes of pathogens and their host cells. When Brenner

(66) published his seminal paper on forward genetic screen-

ing in the free-living nematode Caenorhabditis elegans, he noted

that while ‘nematodes do not have a rich repertoire of exter-

nal features for mutant selection [in contrast to Drosophila],

this has not prevented the isolation of visible mutants.

Indeed, it has had the effect of focusing selection on the

behavioral characteristics of the animals.’ Characterization of

‘uncoordinated’ mutant worms set the stage for establishing

C. elegans as a model genetic system for studying organismal

development. The ability of pathogens to invade their hosts,

modulate subcellular processes, replicate intracellularly, and

egress from the infected cell is central to pathogenesis, and

like the movement and coordination of Brenner’s worms,

these traits are readily observed and measured in vitro. Several

intracellular pathogen species are genetically tractable, mak-

ing possible the same forward and reverse genetic approaches

that have been used for decades to assign function to genes

in model organisms.

Although the first forward genetic screens in C. elegans were

very labor intensive, the relatively large size and hermaphro-

ditic nature of this organism helped to simplify the process.

After scrutinizing thousands of worms under a low power

microscope to identify mutants of interest, individual organ-

isms could be physically isolated for clonal propagation.

Applying such approaches to pathogenic microbes raises sev-

eral significant challenges, not least of which is the difficulty

of identifying biologically significant changes in microscopic

organisms, in the context of millions of wildtype pathogens

growing in the same culture plate or infected animal.

One successful solution to this problem has been provided

by genetically ‘bar-coding’ individuals with unique oligonu-

cleotide sequences, and subjecting pools of tagged mutants to

selective conditions (e.g. growth in minimal media, or in

mice). By comparing the tags present in the starting popula-

tion with those recovered after selection, one can determine

which mutants failed to survive. When Hensel et al. (67)first

described ‘signature-tagged mutagenesis’ (STM), they

screened over 1000 tagged Salmonella mutants for the ability to

survive during a 3-day mouse infection. Forty-three mutants

present in the initial inoculum failed to survive in mice, lead-

ing to the identification of the Salmonella type III secretion sys-

tem as a critical determinant of bacterial virulence (68). STM

has been successfully adapted to numerous bacterial species

(69–71), and in an effort to achieve saturation mutagenesis in

M. tuberculosis, Sassetti et al. (72) have exploited microarray

hybridization to facilitate target identification in complex

pools of tagged mutants. Deep sequencing will undoubtedly

enhance the speed and saturation of such studies in many

pathogens.

These techniques have typically identified approximately

4% of non-essential genes as impacting virulence (73), but

many of the genes identified by such approaches are involved

in housekeeping functions or nutrient salvage, so it is not

particularly surprising that their disruption produces a crip-

pled pathogen. If such techniques are to be useful for under-

standing specific interactions with the host, it will be

important to design secondary screens that distinguish genes

specifically involved in countering or evading host immune

defenses, or otherwise interfacing with host signaling path-

ways. In an elegant example (74), Salmonella type III secretion

mutants were used to infect mice deficient in immune effec-

tor molecules suspected to play a role in pathogen control.

Mutations in host IL-12, IFNc, or iNOS failed to restore the
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virulence of the mutant bacteria, but mice deficient in

NADPH oxidase were susceptible to infection, suggesting that

type III secretion systems might specifically target this host

effector function.

The larger genome size and different gene (and genome)

structure of eukaryotes complicates the use of STM

approaches, especially where efficient transposon systems are

lacking, as in most protozoan parasites. Insertional mutagen-

esis has been successfully applied for STM analysis of T. gondii,

although not to saturation (75, 76). In other eukaryotes,

including C. elegans (77), Drosophila (78), and mammalian

systems (79–81), RNA interference approaches have been

effectively exploited for reverse genetics, but these strategies

have not yet proved practically useful for intracellular proto-

zoan parasites, despite the apparent presence of the necessary

machinery in some species of Leishmania and T. gondii, and the

utility of RNAi in T. brucei (82). All of these parasites are

amenable to stable and transient transfection, however, mak-

ing forward genetics possible. Building on the pioneering

genetic studies of Pfefferkorn (83), Gubbels et al. (29) have

employed fluorescent T. gondii parasites and chemical muta-

genesis to generate a collection of temperature sensitive

mutants. Replica-plated parasite clones were monitored for

growth at restrictive versus permissive temperature, allowing

the identification of >65 cell-cycle mutants from an initial

collection of 60 000 chemical mutants. Complementation

with a genomic cosmid library permitted identification of

the mutant genes responsible for the phenotype. It is exciting

to consider exploiting such libraries for gain-of-function

screens to identify genes enhancing virulence. Although plas-

mid recombination in wild-type T. gondii is normally domi-

nated by non-homologous events (84), deletion of the Ku80

recombinase (28, 31) enhances homologous recombination,

opening the door for high-throughput gene disruption and

tagging studies.

Other strategies for forward genetic analysis have exploited

fluorescent parasites to screen for genes involved in invasion

and egress (85, 86), using automated microscopic imaging

for analysis in 96 or 384-well format. Taking advantage of the

ability to label various subcellular compartments (in various

colors), in living parasites (87), and the ability to isolate liv-

ing parasites clonally by fluorescence-based cell sorting, there

is great potential to observe aspects of pathogen behavior

ranging from cell division to protein trafficking.

While fluorescence-based assays offer the advantage of live

cell and morphology-based measurements, they lack the sensi-

tivity of luciferase assays. Toxoplasma parasites expressing lucif-

erase have been used to track parasite burden in vivo (88) and

screen for anti-parasitic drugs (89), but have not yet been

fully exploited for high-throughput in vitro screens, in part

because conventional detection requires cell lysis. Borrowing

a method commonly used for circadian rhythm studies in

mammalian cells (90), micromolar quantities of the non-toxic

substrate D-luciferin can be added directly to living cultures

(91), allowing pathogen replication or specific gene expres-

sion to be monitored longitudinally under virtually any exper-

imental condition.

Host cell screens

The discovery of RNAi in C. elegans and the subsequent real-

ization that double stranded RNA molecules could also be

used to silence genes in mammalian cells have revolution-

ized functional genomic analysis of eukaryotic systems (92,

93). The first genome-wide screens using RNAi to identify

host genes required for infection were carried out in Dro-

sophila cells infected with either Listeria or Mycobacterium (94,

95). Drosophila cells are well suited to large-scale RNAi

screens due to their relatively low genetic redundancy, and

ability to readily take up and process long gene-specific

RNAs into short 21-mers, resulting in highly efficient gene

silencing (96). This genetic tractability has been exploited

to dissect cellular pathways required for infection by

numerous viruses (97, 98).

In contrast, mammalian cells exhibit higher genetic redun-

dancy, require transfection reagents for RNA uptake, and also

require that these RNAs be provided as 21-mers targeting a

specific gene of interest. As a result, mammalian RNAi studies

are more prone to both false positive results (off-target

effects) and false negatives (due to partial knockdown or func-

tional redundancy). Genome-wide RNAi screens have not yet

been reported in mammalian cells infected with bacterial or

protozoan pathogens, although focused libraries have been

screened, e.g. for cytoskeletal factors regulating the intracellu-

lar motility of Rickettsia (99), and kinases that may regulate

Plasmodium sporozoite infection of liver cells (100). As a com-

plementary strategy, we have exploited the Mammalian Gene

Collection (MGC) library of full-length cDNAs (101, 102), to

carry out gain-of-function screens in host cells infected with

Toxoplasma. In contrast to RNAi, which often yields incomplete

suppression of target genes, cDNA screens typically yield high

levels of ectopic gene expression. Two separate screens sur-

veying >18 000 cDNAs in 384-well format have identified a

set of host cell genes that restrict infection by T. gondii, or mod-

ulate parasite regulation of IFNc ⁄ STAT1 signaling (manu-

scripts in preparation).
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Applying genomic screens to dissect pathogen control of

host signaling pathways

Pathogens are pathogenic only because they impact host

cells ⁄ organisms, which requires that pathogen research ulti-

mately converge on host signaling pathways. Viruses, patho-

genic bacteria, and parasitic protozoa have adapted to survive

within their intracellular niches by regulating host processes in

many ways, including the acquisition of nutrients, modifica-

tion of the host environment and interference with immune

responses. Fig. 2 (see Table S2 Supporting information for ref-

erences) summarizes published references on pathogen regula-

tion of key host signaling pathways. Activation of host NF-jB

and MAPK pathways and suppression of IFNc ⁄ STAT1 signaling

represent common themes, for both bacterial and protozoan

pathogens, and many viruses as well. In contrast, while many

bacterial pathogens induce host cell apoptosis, perhaps to facil-

itate rapid dispersal, protozoan pathogens typically protect the

infected cell from programed death, possibly reflecting a need

to persist within cells for developmental progression.

Even when targeting the same pathway, modulation can be

achieved by many independent means. For example, activa-

tion of NF-jB and MAPK pathways during bacterial infection

is commonly mediated via engagement of Toll-like receptors

(TLRs), but Salmonella can also activate these pathways by tar-

geting Rho-family GTPases directly (103). Similarly, bacterial

and protozoan pathogens employ various strategies to sup-

press STAT1 signaling (104–107), and an even wider range of

mechanisms is known in viral systems (108). The observation

that such diverse pathogens elicit similar host signaling out-

comes during infection indicates that a strong selective pres-

sure drives these specific host–pathogen interactions.

In contrast to non-autonomous traits, such as the activation

of cells by diffusible cytokines, intracellular signaling

pathways and other cell-autonomous phenotypes offer great

potential as the basis for selective screens. For example, cells

infected with T. gondii are resistant to apoptosis (109) raising

the prospect of screening for factors – small molecules, para-

site mutants, host cDNAs, siRNAs targeting the host – that

re-sensitize cells to inducers of apoptosis. Screening unin-

fected and infected cells might be expected to identify factors

that complement the targeted phenotype in infected cells,

revealing genes ⁄pathways specifically targeted by the patho-

gen. One might also expect to identify factors that modulate

pathway activity regardless of infection status, representing

genes downstream of the pathogen-induced block that

improve our understanding of complex mammalian signaling

networks.

Carette et al. (110) recently described an exciting new

method for cell-based screens, using a myeloid leukemia cell

line engineered to carry only a single copy of most chromo-

somes. Retroviral insertional mutagenesis of this effectively

haploid human cell line produces a large collection of null

mutants, a strategy previously available only for model organ-

isms such as S. cerevisiae. Mutant populations (rather than indi-

vidual clones) resistant to lysis by specific bacterial toxins or

infection with influenza virus were profiled by deep sequenc-

ing of cDNAs, providing genome-wide identification of

potential receptors and other targets ⁄ resistance pathways;

similar strategies will undoubtedly be applied to cellular

pathogens in the near future.

Integrating, managing, and querying large data sets

With the rapid advance of technologies for high-throughput

data generation, the need to handle complex datasets, derived

from genome sequencing and population diversity projects,

expression profiling microarrays and RNA-seq, proteomic and

metabolomic analysis, large-scale screening, etc., has become

a common theme in biomedical research. The ability to mine

these datasets effectively hinges on tools for data integration

and visualization, and a growing number of resources are

available to help make sense of genomic-scale datasets (many

open-source). These include tools for functional clustering

(111), ontological analysis (112), gene set enrichment analy-

sis (113), and network analysis (114); such resources have

been extensively reviewed elsewhere (115, 116). As it

becomes increasingly possible to exploit in silico experiments

to drive hypothesis formulation, training in basic bioinfor-

matics skills (such as the use of Perl to parse files, or Biocon-

ductor and other R packages for statistical analyses) is

increasingly essential for success in biomedical research.
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Fig. 2. Pathogen modulation of host signaling pathways. The effect of
bacterial or protozoan pathogens (top) on various cell-autonomous host
cell pathways (left). Red indicates activation; green indicates suppression;
white indicates an unknown phenotype. See Table S2 for literature
references.
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Analyzing one’s own genomic-scale experiments can be a

daunting task, and making sense of data generated by the

broader research community presents an even greater chal-

lenge. Over the past decade, the Eukaryotic Pathogen

Genome Database project (http://EuPathDB.org) (117) and

other Pathogen Bioinformatics Resource Centers (118) have

sought to integrate diverse datasets from many researchers

and experimental platforms, into queryable databases

enabling users to formulate their own questions. In addition

to providing encyclopedic gene and genome views (i.e.

everything known about a particular gene, or chromosomal

span), EuPathDB employs a graphical query interface that

allows users to formulate sophisticated queries that may be

saved or shared for further refinement, or downloaded

for further analysis. For example, a Plasmodium researcher

interested in identifying new vaccine candidates (119, 120)

might design a query strategy seeking all P. falciparum-specific

genes that are highly polymorphic (suggesting that they may

be under immune selection), and predicted to be secreted

during blood stage infection. This query might leverage gen-

ome and population genetic data, gene, and ⁄or protein-level

expression profiling, motif-finding algorithms, orthology and

phylogeny tools, etc., to prioritize experimentally tractable

targets for further analysis at the lab bench or in the field ⁄
clinic. We, and others, have also explored the potential of

weighting criteria to facilitate prioritization further, particu-

larly for drug targets (121–123). These resources seek to

reduce the need for specialized bioinformatics expertise on

the part of individual researchers, enabling them to focus on

biological validation.

The queries outlined above are entirely dependent on the

diverse genomic-scale datasets that have been produced over

the past decade, in various laboratories around the world. If

the role of scientific publication is to insure that future

researchers can build on existing knowledge, large-scale data-

sets cannot be considered published unless they are available

in electronic format. Indeed, systems-level analysis is impos-

sible unless such data is computationally accessible. Fortu-

nately, the development of data standards and repositories

has tracked the growth of genomic-scale analysis, with

resources such as GEO and ArrayExpress providing archival

storage of expression profiling datasets, although these

resources are not well structured for interrogation, as illus-

trated by the manual curation required to generate Table S1

[Supporting information]. Worse still, no tools are available

for interrogating the data within these diverse datasets

directly, except in cases where they have been loaded into

specialized databases such as EuPathDB. For example, the

summary of pathogen interactions with signaling pathways

presented in Fig. 2 was compiled from published conclusions,

rather than by interrogating the underlying data. As a result,

comprehensive automated analysis of host datasets from mul-

tiple sources is not currently possible, and integrated analysis

of both host and pathogen datasets in parallel is currently a

genomic ‘no man’s land,’ posing a clear challenge for the

future.

Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Table S1. Manually curated gene expression microarray

datasets used to generate Fig. 1b. Datasets for five bacterial

pathogens and four parasitic protists were retrieved from the

NCBI public repository, Gene Expression Omnibus (GEO).

GEO ‘Series’ (GSExxxx) datasets (rows) were classified accord-

ing to the kind of experiment they represent (columns). Indi-

vidual pathogens are summarized on separate tabs of the

spreadsheet.

Table S2. A summary of references that were manually

curated to generate the heatmap shown in Fig. 2.

Please note: Wiley-Blackwell are not responsible for the

content or functionality of any supporting materials supplied

by the authors. Any queries (other than missing material)

should be directed to the corresponding author for the

article.
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