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Review
Protozoan parasites, such as Plasmodium, Toxoplasma,
Cryptosporidium, trypanosomes, and Leishmania, are a
major cause of disease in both humans and other ani-
mals, highlighting the need to understand the full spec-
trum of strategies used by the host immune system to
sense and respond to parasite infection. Although type II
interferon (IFN-g) has long been recognized as an essen-
tial antiparasite immune effector, much less is known
about the role of type I interferons (IFN-a and -b) in host
defense, particularly in vivo. Recent studies are reviewed
which collectively highlight that type I IFN can be in-
duced in response to parasite infection and influence the
outcome of infection.

IFNs in host defense
IFNs were first discovered in the late 1950s as soluble
effector molecules released into the supernatant of virus-
infected cell cultures [1]. When transferred to new cells,
this supernatant ‘interfered’ with viral replication, thereby
garnering the name interferon. In the decades since their
discovery IFNs have been intensively studied for their
antiviral activity, resulting in the identification of three
classes of molecules that are distinguished by function and
receptor usage. Type I IFNs – the original interfering
factor in Isaacs and Lindenmann’s experiments – consist
of many separate molecules, encoded by distinct genes,
which are expressed by an abundance of cell types in
response to viral infection. The ability of most cells to both
produce and respond to type I IFN allows autocrine and
paracrine effects in virtually any tissue. By contrast, type
II IFN consists only of single member, IFN-g, which is
produced by a limited range of cell types, with T cells and
natural killer cells acting as the major source, and which
has proven to be crucial for host defense to intracellular
pathogens. Much less is known about the recently identi-
fied type III IFNs (IFN-l), but they appear to elicit similar
responses to type I IFN [2]; however, the expression of their
receptor is more restricted [3,4].

Type I and II IFNs elicit similar but distinct intracellu-
lar signaling cascades after binding to their receptors. Type
I IFNs activate the receptor-associated kinases, JAK1
(Janus kinase) and TYK2 (tyrosine kinase 2), leading to
phosphorylation and subsequent heterodimerization of
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cytosolic transcription factors, STAT1 (signal transducer
and activator of transcription) and STAT2, which then
interact with the transcription factor, IRF9 (IFN regulato-
ry factor 9), to form a complex termed the IFN-stimulated
gene factor 3 (ISGF3) [5]. ISGF3 translocates to the nucle-
us where it binds to IFN-stimulated response elements
(ISRE) composed of a YAGTTTC(A/T)YTTTYCC motif [6]
that is found in the promoters of IFN-stimulated genes
(ISGs). By contrast, type II IFN activates JAK1 and JAK2,
leading to STAT1 homodimer formation, nuclear translo-
cation, and binding to g-activated sequences (GAS) con-
taining a TTCN2-4GAA motif [7].

In the same way as type I IFN has been extensively
explored in the context of viral infections, protozoan infec-
tions have proven to be an important context in which to
understand type II IFN. The potent antiviral activity of type
I IFN, taken together with early studies showing weak or no
activity of type I IFN on parasites or bacteria in vitro, and
the finding that type II IFN is essential in immunity to
Toxoplasma gondii [8,9], Cryptosporidium parvum [10],
Leishmania major [11], and Trypanosoma cruzi [12], has
led to the dichotomous view that type I IFN is antiviral but is
of little importance during parasite infections, where type II
IFN responses dominate. Recent data suggest that this
dichotomy is overly simplistic. As genome-scale approaches
such as transcriptomics are leveraged to interrogate the
host–parasite relationship, investigators are capturing a
more complete picture of the innate immune pathways
activated during parasite infection. Consequently, it is be-
coming apparent that protozoa, similarly to viruses, are
inducers of type I IFN [13], raising questions about how
this pathway might contribute to parasite control and dis-
ease pathogenesis. The significance of type I IFN signaling is
discussed below for specific parasitic diseases.

Plasmodium falciparum

Plasmodium falciparum initiates human infection after
transmission by its mosquito vector. Sporozoite-stage
parasites injected into the skin during mosquito feeding
rapidly enter circulation and travel to the liver, where they
infect hepatocytes and initiate an asymptomatic phase of
infection. Over the course of a few weeks, individual spor-
ozoites develop into exoerythrocytic forms and undergo
rapid cell division and differentiation, eventually giving
rise to thousands of merozoites [14]. Once released from
the liver, merozoites invade red blood cells, initiating the
symptomatic phase of infection characterized by cyclical
fevers and, in some cases, life-threatening anemia, sei-
zures, and coma [15].
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Although liver-stage Plasmodium infection has long
been described as clinically silent [14], it is not immuno-
logically silent, and recent studies reveal that type I IFNs
play an important role in regulating this stage of infection
[16–18]. Portugal and colleagues carried out transcrip-
tomic analysis of livers from infected mice [17], and ob-
served predominantly a type I IFN signature, including
upregulation of Mx2 and Ifit1 – genes known to be rapidly
induced during viral infection and functionally antiviral
[19,20]. Through a series of elegant experiments, Liehl
et al. went on to show that the type I IFN response in
the liver is evident within 36 h of infection from mosqui-
toes. This response required the receptor for type I IFN
(IFNAR), suggesting that the signature is amplified by an
autocrine feed-forward loop in hepatocytes – that is, liver
cells secrete and respond to their own IFN, resulting in
increased IFN production. IFNAR-deficient mice, or mice
selectively lacking IFNAR on hepatocytes (thereby block-
ing this autocrine feedback), fail to control parasite repli-
cation in the liver, and consequently accumulate a higher
parasite burden in the liver and blood [16,18]. Interesting-
ly, unlike type II IFN, which elicits strong cell-autonomous
killing of intracellular parasites, including Plasmodium
liver-stage parasites [21,22], hepatocyte type I IFN did not
promote intrinsic control of parasite replication. Rather,
autocrine type I IFN signaling in the liver recruits natural
killer T cells, which then mediate parasite killing by
producing type II IFN [18]. The importance of type I
IFN in limiting liver-stage Plasmodium could have impor-
tant clinical implications for treating malaria, particularly
because restriction of parasites in the liver is a major goal
of malaria vaccines currently in Phase III clinical trials
[23,24]. Moreover, type I IFNs have long been used as safe
and effective treatment of viral infections in the liver [25].
Although liver infection is transient with P. falciparum,
other species, such as P. vivax, establish a persistent liver
infection which serves as a reservoir of parasites resulting
in chronic blood infections [26,27]. In light of the high
morbidity caused by relapsing P. vivax, and the fact that
it causes of one of the most prevalent human malaria
infections on the planet [28], it will be important to explore
whether type I IFN can limit either the frequency or
intensity of relapsing disease with P. vivax.

P. falciparum blood-stage infection also induces a type I
IFN signature in human peripheral blood mononuclear
cells, which resolves following chemotherapy [29], and
similar type I IFN responses have been observed in Plas-
modium-infected mice [29–33]. Using a P. berghei mouse
model of severe malaria, Sharma and colleagues showed
that animals deficient in type I IFN signaling survive an
otherwise lethal infection [29], implicating type I IFN in
disease pathogenesis. These data contrast with the host-
protective role described for type I IFN during liver-stage
infection [16,18], and suggest that type I IFN can have
contrasting roles, perhaps as parasites move through their
life cycle, migrate to distinct tissues or cell types, or trigger
different inflammatory programs.

Toxoplasma gondii

Toxoplasma is an orally transmitted parasite that initiates
infection in the gastrointestinal tract, and subsequently
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disseminates via blood circulation to all major organs and
tissues. In most healthy hosts, a robust immune response
is mounted that effectively controls parasite replication,
but some parasites evade this response, differentiate to a
slowly dividing stage, and establish a latent infection in the
central nervous system. Although the genus Toxoplasma
contains only one species, T. gondii, sexual recombination
has resulted in strains that vary dramatically in virulence
and host immune activation. The population genetic struc-
ture of Toxoplasma is dominated by three archetypal
lineages – termed types I, II, and III – but ‘atypical’ strains
that fall outside of this classification are also found. A
transcriptomic survey of the host response to 29 different
T. gondii strains revealed that a subset of atypical strains
induce a type I IFN response in macrophages and fibro-
blasts [34]. Similarly, another recent study confirmed that
canonical strains do not induce type I IFN, but showed that
a close relative of Toxoplasma, Neospora caninum, acti-
vates a robust type I IFN response that is sufficient to
control a viral challenge in vitro [35].

Whether Toxoplasma strains or Neospora induce type I
IFN in vivo and what, if any, consequence this might have
for parasite replication or immune pathology, remain open
questions. Early in vitro studies with recombinant type I
IFN showed either weak or no effect on parasite replica-
tion, in contrast to type II IFN, which mediates potent cell-
intrinsic immunity [36–38]. Similarly, infection of IFNAR-
deficient mice with a canonical type II strain showed no
impact on acute infection [36], but this study did not allow
infections to progress to the chronic phase. Interestingly,
both Neospora and atypical Toxoplasma strains are asso-
ciated with disease in immunocompetent hosts and dem-
onstrate a propensity for vertical transmission from
mother to fetus [39–42]. Moreover, studies in mice have
shown that impaired type II IFN leads to enhanced vertical
transmission in mouse model of transplacental toxoplas-
mosis [43], suggesting a possible scenario in which atypical
strains and/or Neospora induce type I IFN, resulting in
repression of type II IFN and more severe disease. Finally,
given the recent findings that type I IFN has immunomod-
ulatory effects during chronic viral and bacterial infec-
tions, it will be important to test whether signaling
through this pathway influences latent Toxoplasma infec-
tion in the brain.

The observation that only a few atypical strains, but no
canonical strains of Toxoplasma, induce type I IFN in vitro
suggests that the majority of strains either lack the molec-
ular signature to induce this response or that they have
evolved additional mechanisms to suppress type I IFN
signaling. Surprisingly, the addition of heat-killed, rather
than live, Toxoplasma to cultures resulted in robust type I
IFN signaling by representative members of each arche-
typal lineage, suggesting that Toxoplasma is capable of
triggering type I IFN [35]. To test whether live Toxoplasma
suppress this response, Beiting et al. carried out competi-
tion assays between Toxoplasma and Neospora, both of
which infect the same cells, and found that Neospora could
no longer induce type I IFN in cells previously infected
with Toxoplasma. Collectively, these results demonstrate
that Toxoplasma possesses both a type I IFN-inducing
factor, as well as mechanism to prevent the innate
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response to this factor. Furthermore, Rosowski et al.
showed that although Toxoplasma infected cells stimulat-
ed with IFN-b appropriately activate and translocate
STAT1 to the nucleus, STAT1 is retained on the DNA,
failing to recycle and resulting in a poor induction of
STAT1 target genes [44]. Collectively, these results show
that Toxoplasma has evolved strategies for limiting both
the induction of type I IFN and the ability of type I IFN to
activate STAT1-dependent transcription. One interpreta-
tion of these results is that there may be a selective fitness
advantage for Toxoplasma strains to limit type I IFN
responses, and similar suppressive capacity has been
shown for Toxoplasma and type II IFN signaling [45–49].

Leishmania and trypanosomes

Leishmania spp. are transmitted by the bite of a sand fly
and are subsequently taken up by macrophages, where
they differentiate to a rapidly dividing form and continue a
lytic cycle of replication, ultimately resulting in disease
ranging from mild to severe. The most common form of the
disease, cutaneous leishmaniasis, is characterized by the
development of an ulcerated skin lesion at the site of
infection. In a mouse model of cutaneous leishmaniasis,
Diefenbach and colleagues showed that type I IFN is a
crucial component of the innate immune response to Leish-
mania major infection in mice [50,51]. Soon after infection,
macrophages produce type I IFN, which is required for
nitric oxide production and control of parasite replication.
Consequently, mice lacking IFNAR develop non-healing
lesions [51]. Moreover, the administration of recombinant
type I IFN is sufficient to rescue a susceptible mouse strain
from lethal infection [52]. Interestingly, Leishmania, simi-
larly to Toxoplasma, appears to have evolved a mechanism
to counter this innate response. Parasite infection acti-
vates macrophage 4E-BP1 (eukaryotic translation initia-
tion factor 4E binding protein 1), a translational repressor,
previously shown to be a strong negative regulator type I
IFN production through repression of IRF7 expression, an
important regulator of type I IFN [53]. Blocking parasite
activation of 4E-BP1 during infection, either through
chemical or genetic manipulation, restores host cell trans-
lation and type I IFN production, markedly impairing
parasite replication in vitro and in vivo [54]. Little is known
about Leishmania infection and type I IFN in human
infections. Genomic profiling of human L. braziliensis skin
lesions showed induction of type I IFN signaling in both
early- (non-ulcerated) and late-stage lesions [55]. However,
the nitric oxide-dependent protective effect of type I IFN
described in mice may not pertain to humans, where
reactive oxygen species, rather than nitric oxide, appear
to be important for limiting parasite growth [56]. Further-
more, there is evidence that type I IFN suppresses reactive
oxygen species during Leishmania infection [57].

Trypanosoma cruzi and Trypanosoma brucei, the caus-
ative agents of Chagas disease and African sleeping sick-
ness, respectively, are also introduced by an insect vector
and invade through the skin. T. cruzi is capable of infecting
virtually any nucleated cell and, similarly to Leishmania,
in vitro and in vivo infection triggers an early and robust
type I IFN response [58–60], the magnitude of which
correlates with parasite virulence [58]. Infection of
IFNAR-deficient mice with T. cruzi or T. brucei showed
that type I IFN signaling had either a modest or no role in
parasite restriction [61–63]. In other contexts, perhaps
owing to parasite dose, strain used, or route of infection,
type I IFN appears to increase disease susceptibility dur-
ing T. cruzi infection by suppressing type II IFN [61,63,64].

Redundancy and crosstalk between type I IFN and type
II IFN
Protozoan parasites are generally recognized as potent
inducers of type II IFN. The growing appreciation that
they can also induce type I IFN provides an opportunity to
address fundamental questions in immunoparasitology:
are the roles of these two cytokines redundant during
parasite infection? How does ‘crosstalk’ between type I
and type II IFN alter the course of infection? Answers to
these questions are beginning to emerge. For example,
recent studies have shown that, like liver-stage infection,
Plasmodium blood-stage infection also induces a rapid
type I IFN signature in mice [30–33], and this occurs at
a time when type II IFN is also produced in abundance [30].
In a carefully conducted study, Kim and colleagues utilized
Ifnar�/�, Ifngr�/�, or mice lacking both receptors, combined
with transcriptomics of whole blood, to dissect the contri-
butions of type I and type II IFN signaling to immunity,
and found significant redundancy in their ability to regu-
late target gene expression and limit infection [30]. This
finding may explain why other groups report only a modest
impact on parasitemia in mice singly deficient in IFNAR
[31,36,65]. Additional studies are needed across multiple
parasite infections to understand better the extent of
functional redundancy when these two cytokines are copro-
duced. Interestingly, population genetics studies in
humans have shown that type II IFN and numerous
members of the type I IFN family show strong purifying
selection against deleterious mutations, suggesting non-
redundant, essential roles for both cytokines [66,67].

Type I IFN and type II IFN have pleiotropic effects on
multiple cell types, raising the possibility of crosstalk
occurring during protozoan infections. Under homeostatic
conditions, this crosstalk is thought to be beneficial be-
cause basal type I IFN production primes cells to respond
appropriately to both IFN-a/b and -g [68,69]. The impor-
tance of IFN cross-priming extends to immune responses
as well, where type I IFN has been shown to promote
innate cell production of type II IFN [70,71]. Indeed, this
has been suggested to be the mechanistic basis for admin-
istration of recombinant type I IFN leading to enhanced
parasite control [37,72]. Paradoxically, type I IFN can also
repress type II IFN signaling. During infection with the
Gram-positive bacterium, Listeria monocytogenes, type I
IFN increases the susceptibility of mice by downregulating
macrophage expression of the type II IFN receptor [73,74].
Immunomodulation of type II IFN signaling by type I IFN
could have important implications for protozoan infections,
which, similarly to Listeria, require a strong type II IFN
response to eradicate infection. Consistent with this no-
tion, Haque et al. found that type I IFN increased suscep-
tibility of mice during Plasmodium blood-stage infection,
and IFNAR-deficient mice are protected from lethal infec-
tion. The authors went on to show that type I IFN signaling
493
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suppressed the ability of dendritic cells to prime T cells to
produce type II IFN [33,75]. This suppressive effect has
also been reported in human infections with Mycobacteri-
um leprae, where low type I IFN signaling in the skin is
associated with high type II IFN and self-healing lesions,
whereas high type I IFN is associated with low type II IFN
and disseminated leprosy [76]. Similar findings have even
been described in viral infections. Chronic lymphocytic
choriomeningitis (LCMV) infection is associated with high
levels of type I IFN. Remarkably, when LCMV-infected
mice were treated with neutralizing antibody to type I IFN
during chronic infection, CD4 T cell function and type II
IFN production were enhanced and virus was cleared
[77,78].

The factors that determine whether type I IFN will have
a host-protective or pathogenic role during parasite infec-
tion are not fully understood. Interestingly, Mattner et al.
have reported that low, but not high, doses of recombinant
type I IFN are protective during Leishmania infection
[50,52], whereas studies in viral infections show that the
timing and duration type I IFN production are important
[79,80]. Experiments with Listeria suggest that the route of
infection can also dictate whether type I IFN plays a host-
protective role, with type I IFN signaling proving essential
for survival when infection is initiated via the oral, but not
systemic, routes [81]. Collectively, these studies demon-
strate that type I IFN can have immunomodulatory effects
on type II IFN signaling, that these effects are observed
broadly across different types of infections, and that the
timing, duration and/or amplitude of type I IFN signaling
may be important determinants in the outcome of disease.
Considering that many protozoan parasites are endemic in
areas of the world where coinfections with viruses would be
commonplace, there is a great need to understand better
how the immunomodulatory properties of type I IFN might
influence parasite infections.

Molecular basis for type I IFN induction during parasite
infection
The observation that evolutionarily divergent parasite
species trigger type I IFN raises questions about what
conserved parasite-associated molecular patterns
(PAMPs) are being recognized, and by which host cell
receptors. Sensing of viruses is well studied, occurring
via either transmembrane Toll-like receptors (TLR), such
as TLR3, TLR7, and TLR9, or by cytosolic molecules such
as retinoic acid-inducible gene-1 (RIG-I)-like receptors
(RLRs), nucleotide oligomerization domain (NOD)-like
receptors (NLRs), and absent in melanoma-2 (AIM2)-like
receptors (ALRs) [82]. Recent studies suggest that several
of these pathways are engaged by parasites as well
(Figure 1), and that the exact pathway involved depends
on host cell type. For example, non-phagocytic cells, such
as fibroblasts, require the cytosolic sensor, RIG-I, to pro-
duce type I IFN in response to Toxoplasma infection
(Figure 1B) [34]. By contrast, plasmacytoid dendritic cells
produce low levels of type I IFN after recognition of Toxo-
plasma profilin by TLR12 [83]. In macrophages, activation
of type I IFN signaling by Toxoplasma and Neospora
requires TLR3 and the adapter protein TRIF (Toll-like
receptor adaptor molecule) [34,35] (Figure 1C). TLR3
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was initially identified as a cellular sensor for viral double
stranded RNA [84]. Consistent with this role, transfection
of macrophages with purified parasite RNA is sufficient to
trigger TLR3-dependent type I IFN production [34,35].
TLR3 localizes to the host cell endosomal compartment,
but Toxoplasma and Neospora reside in a non-fusogenic
vacuole in the host cell cytosol, raising questions about how
receptor and ligand would have the opportunity to interact.
It appears that TLR3 is engaged when parasites are either
phagocytosed or invade cells but are killed (Figure 1C),
leading to fusion with endosomes and acidification [34,35].
In the case of leishmania, actual virus-derived molecules
may be responsible for type I IFN induction. Viruses are
known to infect various parasitic protozoa [85], and some
strains of Leishmania harbor a RNA virus belonging to the
Totiviridae family [86,87]. Compared to strains without
virus, leishmania that harbor viruses are associated with
more severe disease and activate inflammatory gene ex-
pression, including type I IFN, in a TLR3-dependent man-
ner [88,89] (Figure 1E). Taken together with studies
showing that TLR3 is capable of recognizing double strand-
ed RNA from helminth parasites [90], as well as damaged
self RNA [91], these data indicate that TLR3 has evolved to
broadly recognize RNA from phylogenetically diverse spe-
cies, including parasites.

Two different PAMP–receptor interactions leading to
type I IFN responses have been described for Plasmodium
infection. Liehl et al. report that sensing of P. berghei
sporozoites in the liver requires recognition of parasite
RNA by the cytosolic RIG-I-like receptor, MDA5 (melano-
ma-differentiation associated protein 5), and its adapter,
MAVS (mitochondrial antiviral signaling protein) [16]
(Figure 1A). By contrast, Miller et al. found that MDA5,
MAVS, and TLR3 were not necessary to mount a protective
type I IFN response to P. yoelii in the liver [18], suggesting
either that a novel pathway may be involved, or that
parasites might be sensed through multiple redundant
pathways. The discrepancy in these findings could be
explained the use different parasite species. A second
PAMP–receptor interaction was identified in studies of
blood-stage P. falciparum. In an elegant study by Sharma
and colleagues [29], the AT-rich motif, ATTTTTAC, which
is present over 6000 times in the P. falciparum genome,
was found to form stem-loop structures that are recognized
by the cytosolic DNA sensor, stimulator of IFN genes
(STING) and Tank-binding kinase 1 (TBK1). This is pro-
posed to occur when parasite hemozoin – which has been
shown to be coated in parasite DNA [92,93] – is released
during parasite lysis of red blood cells and is subsequently
taken up by phagocytes (Figure 1D). Hemozoin then phys-
ically destabilizes the phagolysosome [94] and escapes
into the cytosol where parasite DNA and STING/TBK1
interact.

Concluding remarks and future directions
Our understanding of innate immune recognition of proto-
zoan parasites has progressed more slowly than for viral or
bacterial pathogens. For decades after their discovery, type
I IFNs were mainly seen as the product of innate recogni-
tion of viruses, but the past 5–10 years have seen a greater
appreciation that type I IFN can be activated by non-viral
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pathogens [95], including protozoan parasites such as
Plasmodium, Toxoplasma, Leishmania, and trypano-
somes, to name a few. Indeed, the data discussed here
collectively show that type I IFN is often induced early
after parasite invasion, can amplify its signal through an
autocrine feed-forward loop (Figure 1G), and can help to
prime an early type II IFN response that is host-protective
(Figure 2A). Although numerous gene products induced by
type II IFN are known to directly target intracellular
parasites for killing, there is little evidence to date that
the genes induced by type I IFN are directly parasiticidal.
In contexts in which type I IFN protects against parasite
infection, the mechanism appears to often be indirect, by
recruiting and/or activating other cells that are host-pro-
tective. Type I IFN also has potent immunomodulatory
effects, and the timing, duration, or intensity the signal
may cause a shift from host protection to susceptibility
(Figure 2). When this happens, it appears to often involve
suppression of type II IFN, which allows increased parasite
replication (Figure 2B). Despite this progress, many ques-
tions remain (Box 1). For example, a common feature of the
protozoan parasites discussed above is the propensity to
495



Box 1. Outstanding questions

� What is the role of type I IFN during chronic parasite infection?

� What are the parasite strategies for immune evasion of type I IFN?

� What is the full spectrum of parasite molecular patterns and host

innate immune sensors involved in type I IFN production?

� What factors determine whether type I IFN is host-protective

versus pathogenic?

� What role does type I IFN play in hosts harboring virus and

parasite coinfections?

� Which, if any, type I IFN-inducible genes are important for cell-

intrinsic control of parasites?

� How does type I IFN production change in intensity or duration as

parasites move through different tissues or developmental

stages?
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establish chronic or recurrent infections, and more work is
necessary to understand how type I IFN influences this
aspect of disease. In addition, although many strategies
have been identified by which viruses evade type I IFN
responses, little is known about how parasites might ac-
complish this task, or whether they are under the same
evolutionary pressure to do so. Given that type I IFN can
suppress type II IFN, it is conceivable that, in some con-
texts, it may be advantageous for parasites to trigger type I
IFN to evade the potent parasiticidal activities of type II
IFN.

Finally, it is remarkable that in nearly every setting in
which a type I IFN signature was identified during para-
site infection, it was revealed using transcriptomics of
infected host cells. This highlights that genome-scale,
discovery-based approaches in immunoparasitology are
an invaluable tool for identifying novel host–pathogen
interactions. Moving forward, new resources are needed
that enable investigators to mine and query host-re-
sponse data to compare how type I IFN responses, as
well as other host–pathogen interactions, compare across
pathogen groups, host species, or cell types, allowing
these questions to be addressed in a more systematic
way [96,97].
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